Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access August 25, 2018

Treatment of Pharmaceutical Process Wastewater with Hybrid Separation Method: Distillation and Hydrophilic Pervaporation

  • Andras Jozsef Toth EMAIL logo , Eniko Haaz , Tibor Nagy , Ariella Janka Tarjani , Daniel Fozer , Anita Andre , Nora Valentinyi , Szabolcs Solti and Peter Mizsey

Abstract

The work is motivated by an industrial problem, which is alcohol removal from pharmaceutical process wastewater. The aim of the study was to develop a complete hybrid operation is investigated. Ethanol dehydration, in combination with distillation and hydrophilic pervaporation, is used to investigate about the extent of separation of the ethanol-water mixture. The aim of this research is to rigorously model and optimize this hybrid operation in professional flowsheet simulator environment. The number of minimal theoretical plates of distillation column and minimal effective membrane transfer area are determined. Cost estimation is also examined according to Douglas methodology. Considering our results it can be concluded that, the distillation and hydrophilic pervaporation processes are suitable for separation ethanol and water in 99.5 weight percent purity

References

[1] E. Favre, Temperature polarization in pervaporation, Desalination 154 (2003) 129-138.10.1016/S0011-9164(03)80013-9Search in Google Scholar

[2] A. Hasanoǧlu, Y. Salt, S. Keleşer, S. Ozkan, S. Dincer, Pervaporation separation of ethyl acetate-ethanol binary mixtures using polydimethylsiloxane membranes, Chemical Engineering and Processing: Process Intensification 44 (2005) 375-381.10.1016/j.cep.2004.06.001Search in Google Scholar

[3] R. Rautenbach, C. Herion, U. Meyer-Blumentoth, Pervaporation membrane separation processes, Membrane Science and Technology Series 1 (1990) 181-191.Search in Google Scholar

[4] N. Valentinyi, E. Csefalvay, P. Mizsey, Modelling of pervaporation: Parameter estimation and model development, Chemical Engineering Research and Design 91 (2013) 174-183.10.1016/j.cherd.2012.07.001Search in Google Scholar

[5] R.W. Baker, Membrane Technology and Applications, 3rd edition ed., Wiley, 2012.10.1002/9781118359686Search in Google Scholar

[6] A. Jonquieres, R. Clement, P. Lochon, J. Neel, M. Dresch, B. Chretien, Industrial state-of-the-art of pervaporation and vapour permeation in the western countries, Journal of Membrane Science 206 (2002) 87-117.10.1016/S0376-7388(01)00768-2Search in Google Scholar

[7] C.L. Hsueh, J.F. Kuo, Y.H. Huang, C.C. Wang, C.Y. Chen, Separation of ethanol-water solution by poly(acrylonitrileco- acrylic acid) membranes, Separation and Purification Technology 41 (2005) 39-47.10.1016/j.seppur.2004.04.002Search in Google Scholar

[8] K. Koczka, J. Manczinger, P. Mizsey, Z. Fonyo, Novel hybrid separation processes based on pervaporation for THF recovery, Chemical Engineering and Processing: Process Intensification 46 (2007) 239-246.10.1016/j.cep.2006.05.016Search in Google Scholar

[9] F. Lipnizki, R.W. Field, P.K. Ten, Pervaporation-based hybrid process: A review of process design, applications and economics, Journal of Membrane Science 153 (1999) 183-210.Search in Google Scholar

[10] K. Konieczny, M. Bodzek, D. Panek, Removal of volatile compounds from the wastewaters by use of pervaporation, Desalination 223 (2008) 344-348.10.1016/j.desal.2007.01.211Search in Google Scholar

[11] F. Lipnizki, S. Hausmanns, P.K. Ten, R.W. Field, G. Laufenberg, Organophilic pervaporation: Prospects and performance, Chemical Engineering Journal 73 (1999) 113-129.10.1016/S1385-8947(99)00024-8Search in Google Scholar

[12] A. Aroujalian, K. Belkacemi, S.J. Davids, G. Turcotte, Y. Pouliot, Effect of protein on flux and selectivity in pervaporation of ethanol from a dilute solution, Separation Science and Technology 38 (2003) 3239-3247.10.1081/SS-120022596Search in Google Scholar

[13] V.S. Cunha, M.L.L. Paredes, C.P. Borges, A.C. Habert, R. Nobrega, Removal of aromatics from multicomponent organic mixtures by pervaporation using polyurethane membranes: Experimental and modeling, Journal of Membrane Science 206(2002) 277-290.10.1016/S0376-7388(01)00776-1Search in Google Scholar

[14] S.B. Kuila, S.K. Ray, Sorption and permeation studies of tetrahydrofuran-water mixtures using full interpenetrating network membranes, Separation and Purification Technology 89 (2012) 39-50.10.1016/j.seppur.2012.01.005Search in Google Scholar

[15] B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishna, Separation of organic-organic mixtures by pervaporation-a review, Journal of Membrane Science 241 (2004) 1-21.10.1016/j.memsci.2004.03.042Search in Google Scholar

[16] T.Q. Nguyen, K. Nobe, Extraction of organic contaminants in aqueous solutions by pervaporation, Journal of Membrane Science 30 (1987) 11-22.10.1016/S0376-7388(00)83337-2Search in Google Scholar

[17] K.M. Devaine, A.J. Meier, C.S. Slater, Pervaporation for the recovery of MEK and other solvents using organophilic membranes, in: R. Bakish (Ed.) Seventh InternationalConference on Pervaporation Process in the ChemicalIndustry, Bakish Materials Corp., Reno, Nevada, 1995, pp. 218.Search in Google Scholar

[18] S.Q. Zhang, A.E. Fouda, T. Matsuura, A study on pervaporation of aqueous benzyl alcohol solution by polydimethylsiloxane membrane, Journal of Membrane Science 70 (1992) 249-255.10.1016/0376-7388(92)80110-6Search in Google Scholar

[19] R.W. Baker, A.L. Athayde, R. Daniels, M. Le, I. Pinnau, J.H. Ly, J.G. Wijmans, J.H. Kaschemekat, V.D. Helm, Development of Pervaporation to Recover and Reuse Volatile Organic Compounds from Industrial Waste Streams, 1997.Search in Google Scholar

[20] L. Li, Z. Xiao, S. Tan, L. Pu, Z. Zhang, Composite PDMS membrane with high flux for the separation of organics from water by pervaporation, Journal of Membrane Science 243(2004) 177-187.10.1016/j.memsci.2004.06.015Search in Google Scholar

[21] A.J. Toth, F. Gergely, P. Mizsey, Physicochemical treatment of pharmaceutical wastewater: distillation and membrane processes, Periodica Polytechnica: Chemical Engineering 55(2011) 59-67.10.3311/pp.ch.2011-2.03Search in Google Scholar

[22] P. Mizsey, A.J. Toth, Application of the principles of industrial ecology for the treatment of process waste waters with physicochemical tools, Industrial Ecology 1 (2012) 101-125.Search in Google Scholar

[23] K. Koczka, Environmental conscious design and industrial application of separation processes, PhD Thesis, BME, Budapest, 2009.Search in Google Scholar

[24] K. Koczka, P. Mizsey, New area for distillation: Wastewater treatment, Periodica Polytechnica: Chemical Engineering 54(2010) 41-45.10.3311/pp.ch.2010-1.06Search in Google Scholar

[25] H.J. Kim, S.S. Nah, B.R. Min, A new technique for preparation of PDMS pervaporation membrane for VOC removal, Advances in Environmental Research 6 (2002) 255-264.10.1016/S1093-0191(01)00056-9Search in Google Scholar

[26] P. Mizsey, K. Koczka, A. Tungler, Treatment of process waters with physicochemical techniques, Hungarian Journal of Chemistry 114 (2008) 107-113.Search in Google Scholar

[27] H.L. Fleming, C.S. Slater, Pervaporation, Springer, New York, 1992.Search in Google Scholar

[28] Q. Liu, R.D. Noble, J.L. Falconer, H.H. Funke, Organics/water separation by pervaporation with a zeolite membrane, Journal of Membrane Science 117 (1996) 163-174.10.1016/0376-7388(96)00058-0Search in Google Scholar

[29] T.C. Bowen, H. Kalipcilar, J.L. Falconer, R.D. Noble, Pervaporation of organic/water mixtures through B-ZSM-5 Science 215 (2003) 235-247.Search in Google Scholar

[30] P. Mizsey, A. Szanyi, A. Raab, J. Manczinger, Z. Fonyo, Intensification of a solvent recovery technology through the use of hybrid equipment, in: G. Johan, S. Jan van (Eds.) Computer Aided Chemical Engineering, Elsevier, 2002, pp. 121-126.10.1016/S1570-7946(02)80048-7Search in Google Scholar

[31] S. Li, V.A. Tuan, J.L. Falconer, R.D. Noble, Properties and separation performance of Ge-ZSM-5 membranes, Microporous and Mesoporous Materials 58 (2003) 137-154.10.1016/S1387-1811(02)00612-1Search in Google Scholar

[32] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, Journal of Membrane Science 107 (1995) 1-21.10.1016/0376-7388(95)00102-ISearch in Google Scholar

[33] Z.K. Xu, Q.W. Dai, Z.M. Liu, R.Q. Kou, Y.Y. Xu, Microporous polypropylene hollow fiber membranes: Part II. Pervaporation separation of water/ethanol mixtures by the poly(acrylic acid) grafted membranes, Journal of Membrane Science 214 (2003)71-81.Search in Google Scholar

[34] T. Mohammadi, A. Aroujalian, A. Bakhshi, Pervaporation of dilute alcoholic mixtures using PDMS membrane, Chemical Engineering Science 60 (2005) 1875-1880.10.1016/j.ces.2004.11.039Search in Google Scholar

[35] C. Marsden, Solvents And Allied Substances Manual With Solubility Chart, Cleaver-Hume and Elsevier, London, 1954.Search in Google Scholar

[36] A.J. Toth, A. Andre, E. Haaz, P. Mizsey, New horizon for the membrane separation: Combination of organophilic and hydrophilic pervaporations, Separation and Purification Technology 156 (2015) 432-443.10.1016/j.seppur.2015.10.032Search in Google Scholar

[37] A.J. Toth, P. Mizsey, Methanol removal from aqueous mixture with organophilic pervaporation: Experiments and modelling, Chemical Engineering Research and Design 98 (2015) 123-135.10.1016/j.cherd.2015.04.031Search in Google Scholar

[38] G.F. Tusel, H.E.A. Bruschke, Use of pervaporation systems in the chemical industry, Desalination 53 (1985) 327-338.10.1016/0011-9164(85)85070-0Search in Google Scholar

[39] N. Valentinyi, P. Mizsey, Comparison of pervaporation models with simulation of hybrid separation processes, Periodica Polytechnica: Chemical Engineering 58 (2014) 7-14.Search in Google Scholar

[40] A.J. Toth, Liquid Waste Treatment with Physicochemical Tools for Environmental Protection, PhD Thesis, BME, Budapest, 2015.Search in Google Scholar

[41] J.M. Douglas, Conceptual design of chemical processes, McGraw-Hill, New York, 1988.Search in Google Scholar

Received: 2017-11-10
Accepted: 2017-12-05
Published Online: 2018-08-25

© 2018 Andras Jozsef Toth et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 4.6.2023 from https://www.degruyter.com/document/doi/10.1515/wtr-2018-0002/html
Scroll to top button