Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter September 8, 2021

Hidden Champions as a Determinant of Regional Development: An Analysis of German Districts

  • Lena Benz ORCID logo EMAIL logo , Jörn H. Block ORCID logo and Matthias S. Johann ORCID logo

Abstract

Hidden Champions (HCs) are defined as market leaders in niche markets. They represent the success of the German Mittelstand like no other group of firms. However, little is known on how HCs contribute to regional development. Given their export strength, regional embeddedness, and strong vertical integration we expect HCs to have a profound effect on regional development. Using a German dataset of 1,645 HCs located in 401 German districts, we analyze the effect of HCs on a variety of regional development dimensions. Our results show that HCs are not equally distributed across regions and influence regional development. Regions with a higher number of HCs show strong regional economic performance in terms of median income. Moreover, HC intensity affects regional unemployment and trainee rates as well as regional innovation in terms of patents. Surprisingly, we did not find an effect of regional HC intensity on regional R&D levels and GDP. We can further conclude that the effect of HCs is not limited to the particular region in which they are located but that sizable spillover effects exist. Besides its contribution to the regional development literature, our study adds to a better understanding of the HC-phenomenon. Implications for regional policy makers are discussed.

Acknowledgements

We acknowledge helpful and constructive comments from Michael Stützer and participants of the G-Forum 2020 as well as the 6th International Research Forum on Mittelstand on earlier versions of the manuscript. Special thanks is also given to the Research Data Center of the Donors’ Association for Science Statistics for providing the district level R&D data. Also, we would like to thank the editor Sebastian Henn and the two reviewers of the ZFW for the constructive comments, which significantly improved the quality of our manuscript. Furthermore, we would like to thank the Donors’ Association for Science Statistics and the German Savings Banks and Giro-Association (DSGV) for supporting our research.

References

Acs, Z. J., Anselin, L. & Varga, A. (2002) Patents and innovation counts as measures of regional production of new knowledge. Research Policy, 31(7): 1069–1085.10.1016/S0048-7333(01)00184-6Search in Google Scholar

Ambos, B. & Mahnke, V. (2010) How Do MNC Headquarters Add Value? Management International Review, 50(4): 403–412.10.1007/s11575-010-0040-5Search in Google Scholar

Anselin, L. (2001) Spatial econometrics. In: Baltagi, B. H. (ed.) A Companion to theoretical econometrics (pp. 310–330). Oxford: Blackwell.10.1002/9780470996249.ch15Search in Google Scholar

Audretsch, D. B. & Feldman, M. P. (2004) Knowledge spillovers and the geography of innovation. In: Henderson, J. V. & Thisse, J.-F. (eds.) Handbook of Regional and Urban Economics, Vol 4 (pp. 2713–2739). Amsterdam: Elsevier.10.1016/S1574-0080(04)80018-XSearch in Google Scholar

Audretsch, D., Falck, O., Feldman, M. & Heblich, S. (2008) The Lifecycle of Regions. CEPR Discussion Paper, No. 6757.Search in Google Scholar

Audretsch, D. B., Lehmann, E. E. & Schenkenhofer, J. (2018) Internationalization strategies of hidden champions: Lessons from Germany. Multinational Business Review, 26(1): 2–24.10.1108/MBR-01-2018-0006Search in Google Scholar

Audretsch, D. B., Lehmann, E. E. & Schenkenhofer, J. (2020) A context-choice model of niche entrepreneurship. Entrepreneurship: Theory and Practice.10.1177/1042258720936042Search in Google Scholar

Baù, M., Block, J., Discua Cruz, A. & Naldi, L. (2021) Bridging locality and internationalization – A research agenda on the sustainable development of family firms. Entrepreneurship & Regional Development, 1–16.10.1080/08985626.2021.1925846Search in Google Scholar

Baum, M., Schwens, C. & Kabst, R. (2011) A typology of international new ventures: empirical evidence from high‐technology industries. Journal of Small Business Management, 49(3): 305–330.10.1111/j.1540-627X.2011.00328.xSearch in Google Scholar

Baum, M., Schwens, C. & Kabst, R. (2015) A latent class analysis of small firms’ internationalization patterns. Journal of World Business, 50(4): 754–768.10.1016/j.jwb.2015.03.001Search in Google Scholar

Basco, R. (2015) Family business and regional development ‒ A theoretical model of regional familiness. Journal of Family Business Strategy, 6(4): 259–271.10.1016/j.jfbs.2015.04.004Search in Google Scholar

Bathelt, H. & Li, P. (2020) Building better methods in economic geography. Zeitschrift für Wirtschaftsgeographie, 64(3): 103–108.10.1515/zfw-2020-0014Search in Google Scholar

Becker, J. & Fuest, C. (2010) Internationalization and business tax revenue – Evidence from Germany. International Tax and Public Finance, 17: 174–192.10.1007/s10797-009-9112-5Search in Google Scholar

Berlemann, M. & Jahn, V. (2016) Regional Importance of Mittelstand Firms and Innovation Performance. Regional Studies, 50(11): 1–15.10.1080/00343404.2015.1058923Search in Google Scholar

Blind, K., Edler, J., Frietsch, R. & Schmoch, U. (2006) Motives to patent: Empirical evidence from Germany. Research Policy, 35(5): 655–672.10.1016/j.respol.2006.03.002Search in Google Scholar

Block, J. H. & Spiegel, F. (2013) Family firm density and regional innovation output: An exploratory analysis. Journal of Family Business Strategy, 4: 270–280.10.1016/j.jfbs.2013.10.003Search in Google Scholar

Block, J. H., Fisch, C., Ikeuchi, K. & Kato, M. (2021) Trademarks as an indicator of regional innovation: evidence from Japanese prefectures. Regional Studies: 1–20.10.1080/00343404.2021.1887843Search in Google Scholar

Broekel, T. & Brenner, T. (2011) Regional factors and innovativeness: An empirical analysis of four German industries. The Annals of Regional Science, 47: 169–194.10.1007/s00168-009-0364-xSearch in Google Scholar

Chandler, A. D. (1991) The functions of the HQ unit in the multibusiness firm. Strategic Management Journal, 12(S2): 31–50.10.1002/smj.4250121004Search in Google Scholar

Cooke, P. (2001) Regional innovation systems, clusters, and the knowledge economy. Industrial and Corporate Change, 10(4): 945–974.10.1093/icc/10.4.945Search in Google Scholar

Cooke, P., Gomez Uranga, M. & Etxebarria, G. (1998) Regional systems of innovation: An evolutionary perspective. Environment and Planning A, 30(9): 1563–1584.10.1068/a301563Search in Google Scholar

Dalgic, T. & Leeuw, M. (1994) Niche marketing revisited: Concept, applications and some European cases. European Journal of Marketing, 28(4): 39–55.10.1108/03090569410061178Search in Google Scholar

Ermann, U., Lang, T. & Megerle M. (2011) Weltmarktführer: ein räumlicher und zeitlicher Überblick. In: Nationalatlas aktuell 5. Leipzig: Leibniz‐Institut für Länderkunde (IfL).Search in Google Scholar

European Union (2018) Regions in the European Union: Nomenclature of territorial units for statistics – NUTS 2016/EU-28. Luxembourg: Publications Office of the European Union.Search in Google Scholar

Frankfurter Allgemeine Zeitung (2019) Deutschlands Innovationsführer. Available online at: https://www.faz.net/asv/deutschlands-innovationsfuehrer/ [Accessed 07 July 2020].Search in Google Scholar

Fritsch, M. (2008) How does new business formation affect regional development? Introduction to the special issue. Small Business Economics, 30: 1–14.10.1007/s11187-007-9057-ySearch in Google Scholar

Fritsch, M. & Müller, P. (2004) Effects of New Business Formation on Regional Development over Time. Regional Studies, 38(8): 961–975.10.1080/0034340042000280965Search in Google Scholar

Fritsch, M. & Müller, P. (2008) The effect of new business formation on regional development over time: The case of Germany. Small Business Economics, 30: 15–29.10.1007/s11187-007-9067-9Search in Google Scholar

Fritsch, M. & Schroeter, A. (2011) Why does the effect of new business formation differ across regions? Small Business Economics, 36(4): 383–400.10.1007/s11187-009-9256-9Search in Google Scholar

Fritsch, M. & Slavtchev, V. (2011) Determinants of the Efficiency of Regional Innovation Systems. Regional Studies, 45(7): 905–918.10.1080/00343400802251494Search in Google Scholar

Fritsch, M. & Wyrwich, M. (2018) Regional knowledge, entrepreneurial culture, and innovative start-ups over time and space ‒ An empirical investigation. Small Business Economics, 51(2): 337–353.10.1007/s11187-018-0016-6Search in Google Scholar

Fritsch, M. & Wyrwich, M. (2021) Does Successful Innovation Require Large Urban Areas? Germany as a Counterexample. Economic Geography.10.1080/00130095.2021.1920391Search in Google Scholar

Fryges, H. (2006) Hidden champions – How young and small technology-oriented firms can attain high export-sales ratios. ZEW Discussion Paper, 06–045: 1–29. Mannheim.10.2139/ssrn.913947Search in Google Scholar

Hamermesh, R. G., Anderson, M. J. & Harris, J. E. (1978) Strategies for low market share businesses. Harvard Business Review, 50(3): 95–102.Search in Google Scholar

Herstatt, C., Tiwari, R. & Buse, S. (2017) Innovating for emerging markets? An assessment of German Hidden Champions’ strategies. In: Burr, W. & Stephan, M. (eds.) Technologie, Strategie und Organisation (pp. 219–238). Wiesbaden: Springer Gabler.10.1007/978-3-658-16042-5_12Search in Google Scholar

Hezar, I., Dalgic, T., Phelan, S. & Knight, G. (2006) Principles of global niche marketing strategies: An early conceptual framework. In: Dalgic, T. (ed.) Handbook of Niche Marketing (pp. 25–63). New York, NY: The Haworth Press.Search in Google Scholar

Iyer, S., Kitson, M. & Toh, B. (2005) Social Capital, Economic Growth and Regional Development. Regional Studies, 39(8): 1015–1040.10.1080/00343400500327943Search in Google Scholar

Jahn, V. (2018) The importance of owner-managed SMEs and regional apprenticeship activity: Evidence from the German Mittelstand. Empirical Research in Vocational Education and Training, 10(8).10.1186/s40461-018-0068-5Search in Google Scholar

Johann, M., Block, J., & Benz, L. (2021). Financial performance of hidden champions: Evidence from German manufacturing firms. Forthcoming in: Small Business Economics.10.1007/s11187-021-00557-7Search in Google Scholar

Kirchner, P. (2019) Kompetenzentwicklung regionaler Wirtschaft. Fallstudien aus Heilbronn-Franken. Industrie- und Handelskammer Heilbronn-Franken (Ed.). Ubstadt-Weiher: Verlag Regionalkultur.Search in Google Scholar

Kitson, M., Martin, R. & Tyler, P. (2004) Regional Competitiveness: An Elusive yet Key Concept? Regional Studies, 38(9): 991–999.10.1080/0034340042000320816Search in Google Scholar

Knight, G. A. & Cavusgil, S. T. (2004) Innovation, organizational capabilities, and the born-global firm. Journal of International Business Studies, 35(2): 124–141.10.1057/palgrave.jibs.8400071Search in Google Scholar

Kotler, P. (Eds.) (1997) Marketing Management – Analysis, Planning, Implementation, and Control. Upper Saddle River, New Jersey: Prentice-Hall International, Inc.Search in Google Scholar

Landau, C. & Bock, C. (2013) Value Creation through Vertical Intervention of Corporate Centres in Single Business Units of Unrelated Diversified Portfolios – The Case of Private Equity Firms. Long Range Planning, 46(1–2): 97–124.10.1016/j.lrp.2012.11.002Search in Google Scholar

Lang, T., Görmar, F., Graffenberger, M. & Vonnahme, L. (2019) Hidden Champions und Stadtentwicklung: Die wirtschaftliche und gesellschaftliche Bedeutung innovativer Unternehmen für Kleinstädte in peripherer Lage. Bonn: Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR).Search in Google Scholar

Langenscheidt, F. & Venohr, B. (2014) Lexikon der deutschen Weltmarktführer. Köln: Gabal.Search in Google Scholar

Lehmann, E. E., Schenkenhofer, J. & Wirsching, K. (2019) Hidden champions and unicorns: A question of the context of human capital investment. Small Business Economics, 52: 359–374.10.1007/s11187-018-0096-3Search in Google Scholar

Lopez, L. E., Kundu, S. K. & Ciravegna, L. (2009) Born global or born regional? Evidence from an exploratory study in the Costa Rican software industry. Journal of International Business Studies, 40(7): 1228–1238.10.1057/jibs.2008.69Search in Google Scholar

McKieman, P. & Purg, D. (Eds.) (2013) Hidden Champions in CEE and Turkey: Carving Out a Global Niche. Berlin, Heidelberg: Springer.10.1007/978-3-642-40504-4Search in Google Scholar

Makkonen, T. & van der Have, R. P. (2013) Benchmarking regional innovative performance: Composite measures and direct innovation counts. Scientometrics, 94: 247–262.10.1007/s11192-012-0753-2Search in Google Scholar

Memili, E., Fang, H., Chrisman, J. J. & De Massis, A. (2015) The impact of small- and medium-sized family firms on economic growth. Small Business Economics, 45(4): 771–785.10.1007/s11187-015-9670-0Search in Google Scholar

Pahnke, A. & Welter, F. (2019) The German Mittelstand: Antithesis to Silicon Valley entrepreneurship? Small Business Economics, 52: 345–358.10.1007/s11187-018-0095-4Search in Google Scholar

Porter, M. (1980) Competitive Strategy – Techniques for Analyzing Industries and Competitors. New York, NY: The Free Press.Search in Google Scholar

Porter, M. (2003) The Economic Performance of Regions. Regional Studies, 37(6&7): 549–578.10.1080/0034340032000108688Search in Google Scholar

Rammer, C. & Spielkamp, A. (2015) Hidden Champions – Driven by Innovation: Empirische Befunde auf Basis des Mannheimer Innovationspanels. ZEW-Dokumentation, 15–03: 1–43. Mannheim.Search in Google Scholar

Rammer, C. & Spielkamp, A. (2019) German Hidden Champions: Competitive strategies, knowledge management and innovation in globally leading niche players. Ekonomiaz 95(1): 65–87.Search in Google Scholar

Rodriguez-Pose, A. (2013) Do Institutions Matter for Regional Development? Regional Studies, 47(7): 1034–1047.10.1080/00343404.2012.748978Search in Google Scholar

Röhl, K.-H. (2008) Die Zukunft der Familienunternehmen in Deutschland – Potenziale und Risiken in der globalen Wirtschaft. In: Analysen – Forschungsberichte aus dem Institut der deutschen Wirtschaft Köln (pp. 1–120).Search in Google Scholar

Rutten, R. (2019) Openness values and regional innovation: a set-analysis. Journal of Economic Geography, 19(6): 1211–1232.10.1093/jeg/lby061Search in Google Scholar

Schäfer, S. & Mayer H. (2019) Entrepreneurial ecosystems: Founding figures and research frontiers in economic geography. Zeitschrift für Wirtschaftsgeographie, 63(2–4): 55–63.10.1515/zfw-2019-0008Search in Google Scholar

Schlepphorst, S., Schlömer-Laufen, N. & Holz, M. (2016) Determinants of hidden champions: Evidence from Germany. Working Paper, 03/16: 1–20. Bonn, Bonn: Institut für Mittelstandsforschung (IfM).Search in Google Scholar

Schenkenhofer, J. (2020) Hidden champions: A review of the literature & future research avenues. UO Working Paper Series, 06–20, Augsburg.10.1007/s11301-021-00253-6Search in Google Scholar

Schenkenhofer, J. & Wilhelm, D. (2020) Fuelling Germany’s Mittelstand with complementary human capital: The case of the Cooperative State University Baden-Württemberg. European Journal of Higher Education, 10(1): 72–92.10.1080/21568235.2019.1694421Search in Google Scholar

Schoenberger, E. (1991) The corporate interview as a research method in economic geography. The Professional Geographer, 43(2): 180–189.10.1111/j.0033-0124.1991.00180.xSearch in Google Scholar

Seibold, L. K. C., Lantelme, M. & Kormann, H. (2019) German family enterprises – A sourcebook of structure, diversity, growth and downfall. Cham: Springer.10.1007/978-3-030-04101-4_3Search in Google Scholar

Simon, H. (1996) You don’t have to be German to be a “Hidden Champion”. Business Strategy Review, 7(2): 1–13.10.1111/j.1467-8616.1996.tb00118.xSearch in Google Scholar

Simon, H. (2012) Hidden Champions: Aufbruch nach Globalia – Die Erfolgsstrategien unbekannter Weltmarktführer. Frankfurt am Main: Campus.Search in Google Scholar

Simon, H. (2013) Hidden Champions – Die Avantgarde in Globalia. Wirtschaftswissenschaftliches Studium (WiSt), 4: 185–191.10.15358/0340-1650_2013_4_185Search in Google Scholar

Stimson, R. J., Stough, R. R. & Roberts, B. H. (2006) Regional economic development: Analysis and planning strategy. Berlin: Springer.Search in Google Scholar

Stough, R., Welter, F., Block, J. H., Wennberg, K. & Basco, R. (2015) Family business and regional science: “Bridging the gap.” Journal of Family Business Strategy, 6(4): 208–218.10.1016/j.jfbs.2015.11.002Search in Google Scholar

Stuetzer, M., Obschonka, M., Brixy, U., Sternberg, R. & Cantner, U. (2014) Regional characteristics, opportunity perception and entrepreneurial activities. Small Business Economics, 42(2): 221–244.10.1007/s11187-013-9488-6Search in Google Scholar

Sui, S., Yu, Z. & Baum, M. (2012) Prevalence and longitudinal trends of early internationalisation patterns among Canadian SMEs. International Marketing Review, 29(5): 519–535.10.1108/02651331211260368Search in Google Scholar

Sullivan, D. (1994) Measuring the degree of internationalization of a firm. Journal of International Business Studies, 25(2): 235–342.10.1057/palgrave.jibs.8490203Search in Google Scholar

Tarique, I., Schuler, R. & Gong, Y. (2006) A model of multinational enterprise subsidiary staffing composition. International Journal of Human Resource Management, 17(2): 207–224.10.1080/09585190500404424Search in Google Scholar

Teplensky, J. D., Kimberly, J. R., Hillman, A. L. & Schwartz, J. S. (1993) Scope, timing and strategic adjustment in emerging markets: Manufacturers’ strategies and the case of MRI. Strategic Management Journal, 14(7): 505–527.10.1002/smj.4250140703Search in Google Scholar

Thomi, W. & Werner, R. (2001). Regionale Innovationssysteme: Zur territorialen Dimension von Wissen und Innovation. Zeitschrift für Wirtschaftsgeographie, 45(1): 202–218.10.1515/zfw.2001.0012Search in Google Scholar

Toften, K. & Hammervoll, T. (2009) Niche firms and marketing strategy – An exploratory study of internationally oriented niche firms. European Journal of Marketing, 43(11/12): 1378–1391.10.1108/03090560910989948Search in Google Scholar

Toften, K. & Hammervoll, T. (2010a) Strategic orientation of niche firms. Journal of Research in Marketing and Entrepreneurship, 12(2): 108–121.10.1108/14715201011090585Search in Google Scholar

Toften, K. & Hammervoll, T. (2010b) Niche marketing and strategic capabilities: An exploratory study of specialised firms. Marketing Intelligence & Planning, 28(6): 736–753.10.1108/02634501011078138Search in Google Scholar

Vonnahme, L. & Lang, T. (2019) Peripher global: Ergebnisse der standardisierten Befragung zu Innovationsaktivitäten von Weltmarktführern in Deutschland. Working Paper 18, SFB 1199 University of Leipzig.Search in Google Scholar

Voudouris, I., Lioukas, S., Makridakis, S. & Spanos, Y. (2000) Greek Hidden Champions: Lessons from Small, Little-known Firms in Greece. European Management Journal, 18(6): 663–674.10.1016/S0263-2373(00)00057-8Search in Google Scholar

WirtschaftsWoche (2020) Die 500 heimlichen Weltmarktführer 2021. Sonderheft Nr. 1, 1–98.Search in Google Scholar

WirtschaftsWoche (2021) Warum Wertheim einen ungewöhnlichen Namensantrag stellt. Available online at: https://www.wiwo.de/my/unternehmen/mittelstand/stadt-der-weltmarktfuehrer-warum-wertheim-einen-ungewoehnlichen-namensantrag-stellt/27384334.html?ticket=ST-1623127-0wL7PsSjkPREbu4dXEFc-ap2 [Accessed 05 August 2021].Search in Google Scholar

Yogeshwar, R. (Ed.) (2019) Top 100 2019 – Innovationschampions: Die innovativsten Unternehmen im Mittelstand. München: Redline.Search in Google Scholar

Zucchella, A. & Palamara, G. (2006) Niche strategy and export performance. Advances in International Marketing, 17(1): 63–87.10.1016/S1474-7979(06)17002-7Search in Google Scholar

Appendix

Figure A1. Regional distribution of HCs in Germany.
Explanation: Distribution of the absolute number of HCs per district; darker colors represent an increasing number of HCs; grey colored districts possess zero HCs.
Source: Own representation, created via Tableau.
Figure A1.

Regional distribution of HCs in Germany.

Explanation: Distribution of the absolute number of HCs per district; darker colors represent an increasing number of HCs; grey colored districts possess zero HCs.

Source: Own representation, created via Tableau.

Table A1.

Ranking of German districts sorted by descending HC intensity.

District name

HC intensity

Absolute number of HCs

1

Memmingen, city

13.69

6

2

Kaufbeuren, city

13.67

6

3

Tuttlingen

12.13

17

4

Olpe

10.39

14

5

Vulkaneifel

9.90

6

6

Zweibrücken, city

8.77

3

7

Hochsauerlandkreis

8.45

22

8

Main-Tauber-Kreis

8.31

11

9

Hohenlohekreis

8.03

9

10

Siegen-Wittgenstein

7.55

21

11

Schwarzwald-Baar-Kreis

7.53

16

12

Coburg, city

7.27

3

13

Baden-Baden, city

7.26

4

14

Zollernalbkreis

6.88

13

15

Wunsiedel i.Fichtelgebirge

6.83

5

16

Märkischer Kreis

6.79

28

17

Rottweil

6.45

9

18

München

6.31

22

19

Oberbergischer Kreis

6.24

17

20

Freudencity

5.94

7

21

Darmcity, city

5.65

9

22

Heilbronn, city

5.56

7

23

Neuwied

5.50

10

24

Göppingen

5.44

14

25

Miltenberg

5.44

7

26

Jena, city

5.39

6

27

Bernkastel-Wittlich

5.34

6

28

Hof

5.25

5

29

Starnberg

5.14

7

30

Lahn-Dill-Kreis

5.12

13

31

Esslingen

5.06

27

32

Pirmasens, city

4.95

2

33

Stormarn

4.93

12

34

Reutlingen

4.88

14

35

Hagen, city

4.77

9

36

Amberg, city

4.77

2

37

Haßberge

4.73

4

38

Soest

4.64

14

39

Heidenheim

4.53

6

40

Enzkreis

4.52

9

41

Neumarkt i.d.OPf.

4.49

6

42

Aichach-Friedberg

4.49

6

43

Westerwaldkreis

4.46

9

44

Lörrach

4.37

10

45

Heilbronn

4.37

15

46

Mettmann

4.32

21

47

Ennepe-Ruhr-Kreis

4.32

14

48

Vechta

4.24

6

49

Straubing, city

4.18

2

50

Kulmbach

4.18

3

51

Dillingen a.d.Donau

4.17

4

52

Landsberg am Lech

4.16

5

53

Mainz, city

4.15

9

54

Ostalbkreis

4.14

13

55

Neuburg-Schrobenhausen

4.14

4

56

Frankenthal (Pfalz), city

4.12

2

57

Donnersbergkreis

3.99

3

58

Rems-Murr-Kreis

3.99

17

59

Speyer, city

3.97

2

60

Ulm, city

3.96

5

61

Roth

3.94

5

62

Fürth, city

3.91

5

63

Rhein-Hunsrück-Kreis

3.89

4

64

Bamberg, city

3.87

3

65

Nürnberg, city

3.86

20

66

Heidelberg, city

3.74

6

67

Gießen

3.72

10

68

Lindau (Bodensee)

3.67

3

69

Emmendingen

3.63

6

70

Südliche Weinstraße

3.62

4

71

Remscheid, city

3.60

4

72

Herford

3.59

9

73

Schwäbisch Hall

3.57

7

74

Ostallgäu

3.56

5

75

Karlsruhe, city

3.51

11

76

Ludwigsburg

3.49

19

77

Städteregion Aachen

3.42

19

78

Wesermarsch

3.39

3

79

Warendorf

3.24

9

80

Bodenseekreis

3.24

7

81

Lübeck, city

3.22

7

82

Minden-Lübbecke

3.22

10

83

Waldeck-Frankenberg

3.19

5

84

Günzburg

3.18

4

85

Neucity a.d.Waldnaab

3.18

3

86

Ravensburg

3.17

9

87

Main-Spessart

3.17

4

88

Stuttgart, city

3.15

20

89

Pfaffenhofen a.d.Ilm

3.15

4

90

Fulda

3.14

7

91

Altenkirchen (Westerwald)

3.11

4

92

Offenbach

3.11

11

93

Wuppertal, city

3.10

11

94

Tübingen

3.08

7

95

Rosenheim

3.07

8

96

Alb-Donau-Kreis

3.06

6

97

Northeim

3.01

4

98

Bielefeld, city

3.00

10

99

Lichtenfels

2.99

2

100

Hochtaunuskreis

2.96

7

101

Verden

2.92

4

102

Goslar

2.92

4

103

Bad Kissingen

2.91

3

104

Kempten (Allgäu), city

2.90

2

105

Aschaffenburg

2.87

5

106

Kusel

2.84

2

107

Vogelsbergkreis

2.83

3

108

Böblingen

2.81

11

109

Mayen-Koblenz

2.80

6

110

Neckar-Odenwald-Kreis

2.79

4

111

Gütersloh

2.75

10

112

Ansbach

2.72

5

113

Trier, city

2.71

3

114

Steinfurt

2.68

12

115

Mönchengladbach, city

2.68

7

116

Breisgau-Hochschwarzwald

2.66

7

117

Düsseldorf, city

2.58

16

118

Lippe

2.58

9

119

Regen

2.58

2

120

Oberallgäu

2.57

4

121

Ortenaukreis

2.56

11

122

Fürth

2.56

3

123

Schaumburg

2.54

4

124

Calw

2.53

4

125

Landshut

2.52

4

126

Rhön-Grabfeld

2.51

2

127

Rhein-Sieg-Kreis

2.50

15

128

Kassel, city

2.48

5

129

Karlsruhe

2.48

11

130

Bremen, city

2.46

14

131

Schwabach, city

2.45

1

132

Borken

2.43

9

133

Kiel, city

2.42

6

134

Worms, city

2.40

2

135

Ansbach, city

2.39

1

136

Pforzheim, city

2.39

3

137

Nürnberger Land

2.35

4

138

Würzburg, city

2.35

3

139

Waldshut

2.34

4

140

Offenbach am Main, city

2.33

3

141

Coburg

2.30

2

142

Neu-Ulm

2.30

4

143

Fürstenfeldbruck

2.28

5

144

Garmisch-Partenkirchen

2.26

2

145

Traunstein

2.26

4

146

München, city

2.24

33

147

Flensburg, city

2.23

2

148

Köln, city

2.21

24

149

Kitzingen

2.20

2

150

Wiesbaden, city

2.16

6

151

Landau in der Pfalz, city

2.14

1

152

Göttingen

2.13

7

153

Regionalverband Saarbrücken

2.12

7

154

Main-Taunus-Kreis

2.10

5

155

Unterallgäu

2.08

3

156

Bamberg

2.04

3

157

Marburg-Biedenkopf

2.03

5

158

Hameln-Pyrmont

2.02

3

159

Darmcity-Dieburg

2.02

6

160

Biberach

2.00

4

161

Osnabrück

1.96

7

162

Leipzig

1.94

5

163

Merzig-Wadern

1.93

2

164

Bayreuth

1.93

2

165

Passau, city

1.91

1

166

Hamburg, city

1.90

35

167

Neucity an der Weinstraße, city

1.88

1

168

Schweinfurt, city

1.85

1

169

Ilm-Kreis

1.84

2

170

Bonn, city

1.83

6

171

Rendsburg-Eckernförde

1.83

5

172

Osnabrück, city

1.82

3

173

Coesfeld

1.82

4

174

Sonneberg

1.78

1

175

Krefeld, city

1.76

4

176

Bremerhaven, city

1.76

2

177

Koblenz, city

1.75

2

178

Mühldorf a.Inn

1.74

2

179

Lüneburg

1.64

3

180

Kelheim

1.64

2

181

Rhein-Lahn-Kreis

1.64

2

182

Schmalkalden-Meiningen

1.63

2

183

Paderborn

1.63

5

184

Ammerland

1.61

2

185

Duisburg, city

1.60

8

186

Rheingau-Taunus-Kreis

1.60

3

187

Münster, city

1.59

5

188

Bad Tölz-Wolfratshausen

1.57

2

189

Ahrweiler

1.54

2

190

Weimar, city

1.54

1

191

Emsland

1.54

5

192

Sigmaringen

1.53

2

193

Steinburg

1.52

2

194

Wesel

1.52

7

195

Unna

1.52

6

196

Neunkirchen

1.51

2

197

Donau-Ries

1.50

2

198

Kronach

1.49

1

199

Bergstraße

1.48

4

200

Weilheim-Schongau

1.48

2

201

Grafschaft Bentheim

1.47

2

202

Hildesheim

1.45

4

203

Dresden, city

1.44

8

204

Sömmerda

1.44

1

205

Mainz-Bingen

1.42

3

206

Höxter

1.42

2

207

Rheinisch-Bergischer Kreis

1.41

4

208

Holzminden

1.41

1

209

Ebersberg

1.41

2

210

Saarpfalz-Kreis

1.40

2

211

Tirschenreuth

1.38

1

212

Essen, city

1.37

8

213

Bayreuth, city

1.34

1

214

Kyffhäuserkreis

1.33

1

215

Regensburg, city

1.31

2

216

Freiburg im Breisgau, city

1.30

3

217

Mannheim, city

1.29

4

218

Rhein-Neckar-Kreis

1.28

7

219

Freyung-Grafenau

1.28

1

220

Kassel

1.27

3

221

Bad Kreuznach

1.27

2

222

Solingen, city

1.26

2

223

Birkenfeld

1.24

1

224

Saale-Holzland-Kreis

1.20

1

225

Main-Kinzig-Kreis

1.19

5

226

Augsburg

1.19

3

227

Mülheim an der Ruhr, city

1.17

2

228

Ludwigshafen am Rhein, city

1.17

2

229

Limburg-Weilburg

1.16

2

230

Gelsenkirchen, city

1.15

3

231

Düren

1.14

3

232

Jerichower Land

1.11

1

233

Schwalm-Eder-Kreis

1.11

2

234

Altenburger Land

1.11

1

235

Segeberg

1.09

3

236

Konstanz

1.05

3

237

Schwerin, city

1.04

1

238

Region Hannover

1.04

12

239

Regensburg

1.03

2

240

Dortmund, city

1.02

6

241

Greiz

1.02

1

242

Eifelkreis Bitburg-Prüm

1.01

1

243

Herzogtum Lauenburg

1.01

2

244

Ostprignitz-Ruppin

1.01

1

245

Viersen

1.00

3

246

Miesbach

1.00

1

247

Kaiserslautern, city

1.00

1

248

Schleswig-Flensburg

1.00

2

249

Neucity a.d.Aisch-Bad Windsheim

1.00

1

250

Eichsfeld

1.00

1

251

Werra-Meißner-Kreis

0.99

1

252

Wetteraukreis

0.98

3

253

Amberg-Sulzbach

0.97

1

254

Kleve

0.96

3

255

Salzgitter, city

0.95

1

256

Oberhavel

0.95

2

257

Berchtesgadener Land

0.95

1

258

Kaiserslautern

0.94

1

259

Ludwigslust-Parchim

0.94

2

260

Erfurt, city

0.94

2

261

Altötting

0.90

1

262

Erlangen, city

0.89

1

263

Osterholz

0.88

1

264

Vogtlandkreis

0.88

2

265

Rastatt

0.87

2

266

Forchheim

0.86

1

267

Bottrop, city

0.85

1

268

Rhein-Erft-Kreis

0.85

4

269

Wolfenbüttel

0.83

1

270

Meißen

0.83

2

271

Berlin, city

0.82

30

272

Chemnitz, city

0.81

2

273

Braunschweig, city

0.81

2

274

Görlitz

0.78

2

275

Cham

0.78

1

276

Germersheim

0.77

1

277

Alzey-Worms

0.77

1

278

Oldenburg

0.77

1

279

Eichstätt

0.76

1

280

Bad Dürkheim

0.75

1

281

Dithmarschen

0.75

1

282

Erlangen-Höchcity

0.73

1

283

Erding

0.73

1

284

Schwandorf

0.68

1

285

Rhein-Kreis Neuss

0.67

3

286

Frankfurt am Main, city

0.66

5

287

Mittelsachsen

0.65

2

288

Dachau

0.65

1

289

Herne, city

0.64

1

290

Zwickau

0.63

2

291

Anhalt-Bitterfeld

0.63

1

292

Rotenburg (Wümme)

0.61

1

293

Leverkusen, city

0.61

1

294

Nordfriesland

0.60

1

295

Oldenburg (Oldenburg), city

0.59

1

296

Hamm, city

0.56

1

297

Freising

0.56

1

298

Burgenlandkreis

0.55

1

299

Bochum, city

0.55

2

300

Barnim

0.55

1

301

Saalekreis

0.54

1

302

Aurich

0.53

1

303

Salzlandkreis

0.52

1

304

Passau

0.52

1

305

Rostock, city

0.48

1

306

Harz

0.47

1

307

Vorpommern-Rügen

0.45

1

308

Magdeburg, city

0.42

1

309

Halle (Saale), city

0.42

1

310

Harburg

0.40

1

311

Heinsberg

0.39

1

312

Mecklenburgische Seenplatte

0.39

1

313

Groß-Gerau

0.36

1

314

Leipzig, city

0.34

2

315

Bautzen

0.33

1

316

Recklinghausen

0.33

2

317

Pinneberg

0.32

1

318

Neumünster, city

0.00

0

319

Ostholstein

0.00

0

320

Plön

0.00

0

321

Wolfsburg, city

0.00

0

322

Gifhorn

0.00

0

323

Helmstedt

0.00

0

324

Peine

0.00

0

325

Diepholz

0.00

0

326

Nienburg (Weser)

0.00

0

327

Celle

0.00

0

328

Cuxhaven

0.00

0

329

Lüchow-Dannenberg

0.00

0

330

Heidekreis

0.00

0

331

Stade

0.00

0

332

Uelzen

0.00

0

333

Delmenhorst, city

0.00

0

334

Emden, city

0.00

0

335

Wilhelmshaven, city

0.00

0

336

Cloppenburg

0.00

0

337

Friesland

0.00

0

338

Leer

0.00

0

339

Wittmund

0.00

0

340

Oberhausen, city

0.00

0

341

Euskirchen

0.00

0

342

Odenwaldkreis

0.00

0

343

Hersfeld-Rotenburg

0.00

0

344

Cochem-Zell

0.00

0

345

Trier-Saarburg

0.00

0

346

Rhein-Pfalz-Kreis

0.00

0

347

Südwestpfalz

0.00

0

348

Ingolcity, city

0.00

0

349

Rosenheim, city

0.00

0

350

Landshut, city

0.00

0

351

Deggendorf

0.00

0

352

Rottal-Inn

0.00

0

353

Straubing-Bogen

0.00

0

354

Dingolfing-Landau

0.00

0

355

Weiden i.d.OPf., city

0.00

0

356

Hof, city

0.00

0

357

Weißenburg-Gunzenhausen

0.00

0

358

Aschaffenburg, city

0.00

0

359

Schweinfurt

0.00

0

360

Würzburg

0.00

0

361

Augsburg, city

0.00

0

362

Saarlouis

0.00

0

363

St. Wendel

0.00

0

364

Brandenburg an der Havel, city

0.00

0

365

Cottbus, city

0.00

0

366

Frankfurt (Oder), city

0.00

0

367

Potsdam, city

0.00

0

368

Dahme-Spreewald

0.00

0

369

Elbe-Elster

0.00

0

370

Havelland

0.00

0

371

Märkisch-Oderland

0.00

0

372

Oberspreewald-Lausitz

0.00

0

373

Oder-Spree

0.00

0

374

Potsdam-Mittelmark

0.00

0

375

Prignitz

0.00

0

376

Spree-Neiße

0.00

0

377

Teltow-Fläming

0.00

0

378

Uckermark

0.00

0

379

Landkreis Rostock

0.00

0

380

Nordwestmecklenburg

0.00

0

381

Vorpommern-Greifswald

0.00

0

382

Erzgebirgskreis

0.00

0

383

Sächsische Schweiz-Osterzgebirge

0.00

0

384

Nordsachsen

0.00

0

385

Dessau-Roßlau, city

0.00

0

386

Altmarkkreis Salzwedel

0.00

0

387

Börde

0.00

0

388

Mansfeld-Südharz

0.00

0

389

Stendal

0.00

0

390

Wittenberg

0.00

0

391

Gera, city

0.00

0

392

Suhl, city

0.00

0

393

Eisenach, city

0.00

0

394

Nordhausen

0.00

0

395

Wartburgkreis

0.00

0

396

Unstrut-Hainich-Kreis

0.00

0

397

Gotha

0.00

0

398

Hildburghausen

0.00

0

399

Weimarer Land

0.00

0

400

Saalfeld-Rudolcity

0.00

0

401

Saale-Orla-Kreis

0.00

0

Explanation: Ranking of the 401 German Districts according to the descending number of HCs per 100,000 inhabitants per district; further including the absolute number of HCs per district.

Source: Own representation.

Table A2.

Description of variables.

Variable name

Definition

Data Source

Category

GDP per capita

In € per district in 2016

INKAR

Dependent

Median income

Monthly salaries of full-time employees subject to social insurance contributions in € per district in 2017

INKAR

Dependent

Unemployment rate

Share of unemployed in the civilian labor force in % per district in 2017

INKAR

Dependent

Business tax revenues

Business tax revenues in € per inhabitant per district in 2017

INKAR

Dependent

Trainees per 1,000 employed

Number of trainees per 1,000 employees subject to social insurance contributions per district in 2017

INKAR

Dependent

R&D intensity

Total corporate internal R&D expenditures in tsd € per 100,000 inhabitants per district in 2015

Donors’ Association for Science Statistics

Dependent

Patent intensity

Number of granted patents per 100,000 inhabitants per district between 2011 and 2015

EPO

Dependent

Export intensity

Export turnover in tsd € per 100,000 inhabitants per district in 2017

Regional Database of the Statistical Offices of the Federal Republic of Germany and the Federal States

Dependent

HC intensity

Number of HCs per 100,000 inhabitants per district in 2020

Own research

Independent

Population density

Number of inhabitants per km² per county 2017

INKAR

Control

Population average age

In years per district in 2017

INKAR

Control

Firm intensity

Number of firms per 100,000 inhabitants per district in 2017

Regional Database of the Statistical Offices of the Federal Republic of Germany and the Federal States

Control

University intensity

Number of public and private universities per 100,000 inhabitants per district in 2018

Communal Education Database of the Statistical Offices of the Federal Republic of Germany and the Federal States

Control

C-DAX intensity

Number of firms listed in the C-DAX per 100,000 inhabitants per district in 2020

Deutsche Börse AG

Control

New business formation intensity

Number of newly established businesses per 100,000 inhabitants per district in 2017

INKAR

Control

Received: 2020-12-02
Accepted: 2021-08-20
Published Online: 2021-09-08

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.3.2024 from https://www.degruyter.com/document/doi/10.1515/zfw-2020-0043/html
Scroll to top button