Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag September 18, 2014

Preparation of anionic clathrate-II K24-xGe136 by filling of Ge(cF136)

Bodo Böhme, Marianne Reibold, Gudrun Auffermann, Hannes Lichte, Michael Baitinger and Yuri Grin

Abstract

Metastable Ge(cF136) with empty clathrate-II crystal structure was successfully used for the preparation of otherwise hardly accessible germanium clathrate phases. On reaction of Ge(cF136) with potassium vapour at 280 °C for 6 days, the new clathrate-II phase K24Ge136 was formed, in which the cages of the germanium framework are completely filled by potassium atoms. The crystal structure of KxGe136 is discussed for different potassium contents (x=0, 8.6, 24).


Corresponding authors: Bodo Böhme and Yuri Grin, Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany, E-mail: ,

Acknowledgments

We thank Ulrike Schmidt, Anja Völzke and Sebastian Schwinger for chemical analyses, and the Competence Groups Metallografie and Struktur at the MPI CPfS for SEM/EDXS and X-ray diffraction experiments, respectively. This work was financially supported by the Deutsche Forschungsgemeinschaft within the frame of the priority program (SPP 1415) “Kristalline Nichtgleichgewichtsphasen”.

References

[1] A. Grüttner, R. Nesper, H. G. von Schnering, Novel metastable germanium modifications allo-Ge and 4H-Ge from Li7Ge12. Angew. Chem. Int. Ed.1982, 21, 912.Search in Google Scholar

[2] A. Grüttner, R. Nesper, H. G. von Schnering, Neue metastabile Germanium-Modifikationen allo-Ge und 4H-Ge aus Li7Ge12. Angew. Chem.1982, 94, 933.Search in Google Scholar

[3] H. G. von Schnering, M. Schwarz, R. Nesper, The lithium sodium silicide Li3NaSi6 and the formation of allo-silicon. J. Less-Common Met.1988, 137, 297.Search in Google Scholar

[4] P. F. McMillan, J. Gryko, G. Bull, R. Arledge, A. J. Kenyon, B. A. Cressey, Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route. J. Solid State Chem.2005, 178, 937.Search in Google Scholar

[5] D. Neiner, H. W. Chiu, S. M. Kauzlarich, Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles. J. Am. Chem. Soc.2006, 128, 11016.Search in Google Scholar

[6] A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, A guest-free germanium clathrate. Nature2006, 443, 320.10.1038/nature05145Search in Google Scholar PubMed

[7] B. Böhme, A. Guloy, Z. Tang, W. Schnelle, U. Burkhardt, M. Baitinger, Y. Grin, Oxidation of M4Si4 (M=Na, K) to Clathrates by HCl or H2O. J. Am. Chem. Soc.2007, 129, 5348.Search in Google Scholar

[8] Y. Liang, B. Böhme, M. Reibold, W. Schnelle, U. Schwarz, M. Baitinger, H. Lichte, Y. Grin, Synthesis of the Clathrate-I Phase Ba8-xSi46 via redox reactions. Inorg. Chem.2011, 50, 4523.Search in Google Scholar

[9] B. Böhme, S. Hoffmann, M. Baitinger, Y. Grin, Application of n-dodecyltrimethylammonium chloride for the oxidation of intermetallic phases. Z. Naturforsch. 2011, 66b, 230.Search in Google Scholar

[10] A. Kaltzoglou, S. Ponou, T. F. Fässler, A4Ge9 (A = K, Rb) as precursors for Hg-substituted clathrate-I synthesis: crystal structure of A8Hg3Ge43. Eur. J. Inorg. Chem.2008, 4507.10.1002/ejic.200800631Search in Google Scholar

[11] D. Neiner, N. L. Okamoto, C. L. Condron, Q. M. Ramasse, P. Yu, N. D. Browning, S. M. Kauzlarich, Hydrogen encapsulation in a silicon clathrate type I structure: Na5.5(H2)2.15Si46: synthesis and characterization. J. Am. Chem. Soc.2007, 129, 13857.Search in Google Scholar

[12] D. Neiner, N. L. Okamoto, P. Yu, S. Leonard, C. L. Condron, M. F. Toney, Q. M. Ramasse, N. D. Browning, S. M. Kauzlarich, Synthesis and characterization of K8-x(H2)ySi46. Inorg. Chem.2010, 49, 815.Search in Google Scholar

[13] B. Böhme, C. Bonatto Minella, F. Thoss, I. Lindemann, M. Rosenburg, C. Pistidda, K. T. Møller, T. R. Jensen, L. Giebeler, M. Baitinger, O. Gutfleisch, H. Ehrenberg, J. Eckert, Y. Grin, L. Schultz, B1-Mobilstor: materials for sustainable energy storage techniques – lithium containing compounds for hydrogen and electrochemical energy storage. Adv. Engin. Mat.2014, DOI: 10.1002/adem.201400182.10.1002/adem.201400182Search in Google Scholar

[14] P. Hagenmuller, R. Naslain, M. Pouchard, C. Cros, New binary compounds of the alkali metals with boron, silicon, and germanium. Spec. Pub. Chem. Soc.1967, 22, 207.Search in Google Scholar

[15] C. Cros, M. Pouchard, P. Hagenmuller, J. S. Kasper, Sur deux composés du potassium isotypes de l’hydrate de krypton. Bull. Soc. Chim. Fr.1968, 2737.Search in Google Scholar

[16] J. Gallmeier, H. Schäfer, A. Weiss, Eine Käfigstruktur als gemeinsames Bauprinzip der Verbindungen K8E46 (E = Si, Ge, Sn). Z. Naturforsch.1969, 24b, 665.Search in Google Scholar

[17] M. Beekman, G. S. Nolas, Transport properties of the binary type I clathrate K8Ge442. Int. J Appl. Ceram. Technol.2007, 4, 332.Search in Google Scholar

[18] G. K. Ramachandran, P. F. McMillan, J. Dong, O. F. Sankey, K7.62(1)Si46 and Rb6.15(2)Si46: two structure I clathrates with fully occupied framework sites. J. Solid State Chem.2000, 154, 626.Search in Google Scholar

[19] H. G. von Schnering, J. Llanos, K. Peters, M. Baitinger, Y. Grin, R. Nesper, Refinement of the crystal structure of K8Ge442, an intermetallic clathrate I. Z. Kristallogr.-New Cryst. Struct.2011, 226, 9.Search in Google Scholar

[20] A. M. Guloy, Z. Tang, R. Ramlau, B. Böhme, M. Baitinger, Y. Grin, Synthesis of the Clathrate-II K8.6(4)Ge136 by oxidation of K4Ge9 in an ionic liquid. Eur. J. Inorg. Chem.2009, 2455.10.1002/ejic.200801073Search in Google Scholar

[21] W. Carrillo-Cabrera, R. Cardoso Gil, M. Somer, Ö. Persil, H. G. von Schnering, Na12Ge17: a compound with the Zintl Anions [Ge4]4– and [Ge9]4– – synthesis, crystal structure, and raman spectrum. Z. Anorg. Allg. Chem.2003, 629, 601.Search in Google Scholar

[22] M. E. Straumanis, E. Z. Aka, Lattice parameters, coefficients of thermal expansion, and atomic weights of purest silicon and germanium. J. Appl. Phys.1952, 23, 330.Search in Google Scholar

[23] H. G. von Schnering, J. Llanos, J.-H. Chang, K. Peters, E.-M. Peters, R. Nesper, Refinement of the crystal structures of the tetrahedro-tetragermanides K4Ge4, Rb4Ge4 and Cs4Ge4. Z. Kristallogr.-New Cryst. Struct.2005, 220, 324.Search in Google Scholar

[24] C. Cros, J.-C. Benejat, Préparation et propriétés d’un clathrate à très large domaine d’existence: le siliciure de sodium NaxSi136. Bull. Soc. Chim. Fr.1972, 1739.Search in Google Scholar

[25] L. Akselrud, Y. Grin, WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst.2014, 47, 803.Search in Google Scholar

[26] V. Petříček, M. Dušek, L. Palatinus, Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic (2006).Search in Google Scholar

[27] V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Kristallogr.2014, 229, 345.Search in Google Scholar

[28] A. Schlechte, G. Auffermann, M. Bednarski, L. Bochenek, M. Böhme, T. Cichorek, R. Niewa, N. Oeschler, M. Schmidt, F. Steglich, R. Kniep, Crystal chemistry and physical properties of the non-magnetic Kondo-compound HfAs1.7Se0.2. Scientific Report 2006–2008, Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden2009, 41.Search in Google Scholar

[29] Y. Miyake, M. Kato, K. Urano, A method for measuring semi- and non-volatile organic halogens by combustion ion chromatography. J. Chromatogr. A2007, 1139, 63.10.1016/j.chroma.2006.10.078Search in Google Scholar PubMed

[30] K. Fredenhagen, G. Cadenbach, Die Bindung von Kalium durch Kohlenstoff. Z. Anorg. Allg. Chem.1926, 158, 249.Search in Google Scholar

[31] R. W. Ditchburn, J. C. Gilmour, The vapor pressures of monoatomic vapors. Rev. Mod. Phys.1941, 13, 310.Search in Google Scholar

[32] E. Reny, P. Gravereau, C. Cros, M. Pouchard, Structural characterisations of the NaxSi136 and Na8Si46 silicon clathrates using the Rietveld method. J. Mater. Chem.1998, 8, 2839.Search in Google Scholar

[33] M. Beekman, E. N. Nenghabi, K. Biswas, C. W. Myles, M. Baitinger, Y. Grin, G. S. Nolas, Framework contraction in Na-stuffed Si(cF136). Inorg. Chem.2010, 49, 5338.Search in Google Scholar

[34] T. Ban, T. Ogura, Y. Ohashi, R. Himeno, F. Ohashi, T. Kume, Y. Ohya, H. Natsuhara, T. Iida, H. Habuchi, S. Nonomura, Complex changes in the framework of endohedrally Na-doped type II Si clathrates with respect to Na content. J. Mater. Sci.2013, 48, 989.Search in Google Scholar

[35] S. Yamanaka, M. Komatsu, M. Tanaka, H. Sawa, K. Inumaru, High pressure synthesis and structural characterization of the type II clathrate compound Na30.5Si136 encapsulating two sodium atoms in the same silicon polyhedral cages. J. Am. Chem. Soc.2014, 136, 7717.Search in Google Scholar

[36] J. S. Kasper, P. Hagenmuller, M. Pouchard, C. Cros, Clathrate structure of silicon Na8Si46 and NaxSi136 (x<11). Science1965, 150, 1713.10.1126/science.150.3704.1713Search in Google Scholar PubMed

[37] W. F. Claussen, Suggested structures of water in inert gas hydrates. J. Chem. Phys.1951, 19, 259, 662.Search in Google Scholar

[38] M. v. Stackelberg, H. R. Müller, On the structure of gas hydrates. J. Chem. Phys.1951, 19, 1319.Search in Google Scholar

[39] H. M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr.1967, 22, 151.Search in Google Scholar

[40] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr.1969, 2, 65.Search in Google Scholar

[41] M. Beekman, M. Baitinger, H. Borrmann, W. Schnelle, K. Meier, G. S. Nolas, Y. Grin, Preparation and crystal growth of Na24Si136. J. Am. Chem. Soc. 2009, 131, 9642.Search in Google Scholar

[42] S. Stefanoski, C. D. Malliakas, M. G. Kanatzidis, G. S. Nolas, Synthesis and structural characterization of NaxSi136 (0<x≤24) single crystals and low-temperature transport of polycrystalline specimens. Inorg. Chem.2012, 51, 8686.Search in Google Scholar

[43] S. Stefanoski, G. S. Nolas, Synthesis and structural characterization of single-crystal K7.5Si46 and K17.8Si136 clathrates. Cryst. Growth Des.2011, 11, 4533.Search in Google Scholar

[44] S. Bobev, S. C. Sevov, Clathrates of group 14 with alkali metals: an exploration. J. Solid State Chem.2000, 153, 92.Search in Google Scholar

[45] U. Aydemir, C. Candolfi, H. Borrmann, M. Baitinger, A. Ormeci, W. Carrillo-Cabrera, C. Chubilleau, B. Lenoir, A. Dauscher, N. Oeschler, F. Steglich, Y. Grin, Crystal structure and transport properties of Ba8Ge433. Dalton Trans.2010, 39, 1078.Search in Google Scholar

[46] F. Dubois, T. F. Fässler, Ordering of vacancies in type-I tin clathrate: superstructure of Rb8Sn442. J. Am. Chem. Soc. 2005, 127, 3264.Search in Google Scholar

[47] Y. Liang, B. Böhme, A. Ormeci, H. Borrmann, O. Pecher, F. Haarmann, W. Schnelle, M. Baitinger, Y. Grin, A Clathrate-I Phase with Li–Ge framework. Chem. Eur. J.2012, 18, 9818.Search in Google Scholar

[48] H. Horie, T. Kikudome, K. Teramura, S. Yamanaka, Controlled thermal decomposition of NaSi to derive silicon clathrate compounds. J. Solid State Chem.2009, 182, 129.Search in Google Scholar

Received: 2014-5-2
Accepted: 2014-8-7
Published Online: 2014-9-18
Published in Print: 2014-10-1

©2014 by De Gruyter