Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 14, 2014

Synthesis, characterization and time dependent phase transformation of Li0.4WO3 bronze

  • Md. Shahidur Rahman , M. Mangir Murshed EMAIL logo and Thorsten M. Gesing


Lithium tungsten bronzes with a nominal composition of Li0.4WO3 were synthesized by solid state reactions in silica tubes at 973 K and various low pressures. Samples were characterized using X-ray single crystal and powder diffraction, and neutron powder diffraction. The air pressure inside the sealed quartz tubes played roles for the formation of Li0.4WO3 phases with different symmetries. Whereas using a pressure of 10–7 MPa a pure body centered cubic (Im3¯) tungsten bronze was formed, at higher pressures (>10–7 MPa) a mixture of Im3¯ and primitive cubic (Pm3¯m) perovskite tungsten bronzes were observed with pressure dependent phase fractions. While keeping the synthesized samples under open atmospheric conditions the Im3¯ phase gradually transformed into a tetragonal perovskite (P4/nmm) tungsten bronze. The slow cubic into tetragonal phase transformation has been explained in terms of the mobility of lithium within two different crystallographic sites.

Corresponding author: M. Mangir Murshed, Institut für Anorganische Chemie, Chemische Kristallographie fester Stoffe, Universität Bremen, Leobener Straße/NW2, 28359 Bremen, Germany, Phone: +49 421 218 63143, Fax: +49 421 218 63145, E-mail:


We thank Prof. R. X. Fischer (Crystallography, University Bremen) for his critical help on the group-subgroup relations. Thanks to BENSC at HZB for allocation of beam time and facilities. We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for the support in the Heisenberg program (GE1981/3-1 and GE1981/3-2). M. S. R. likes to thank the University Bremen for a PhD stipendium.


[1] P. G. Dickens, M. S. Whittingham, Q. Rev. Chem. Soc. 1968,22, 30.Search in Google Scholar

[2] A. R. Sweedler, C. J. Raub, B. T. Matthias, Phys. Lett. 1965, 15, 108.Search in Google Scholar

[3] L. Bartha, A. B. Kiss, Int. J. Refractory Metals & Hard Materials1995, 13, 77.10.1016/0263-4368(94)00031-XSearch in Google Scholar

[4] F. Wöhler, Ann. Chim. Phys. 1823, 43, 29.Search in Google Scholar

[5] A. Magnéli, B. Blomberg, Acta Chem. Scand.1951, 5, 372.Search in Google Scholar

[6] J. Guo, C. Dong, L. Yang, G. Fu, H. Chen, Mater. Res. Bull. 2007, 42, 1384.Search in Google Scholar

[7] R. J. D. Tilley, Int. J. Refractory Metals & Hard Materials1995, 13, 93.10.1016/0263-4368(95)00004-6Search in Google Scholar

[8] M. E. Straumanis, S. S. Hsu, J. Am. Chem. Soc. 1950, 72, 4027.Search in Google Scholar

[9] M. E. Straumanis, G. F. Doctor, J. Am. Chem. Soc. 1951, 73, 3492.Search in Google Scholar

[10] L. E. Conroy, M. J. Sienko, J. Am. Chem. Soc. 1952, 74, 3520.Search in Google Scholar

[11] P. J. Wiseman, P. G. Dickens, J. Solid State Chem. 1976, 17, 91.Search in Google Scholar

[12] H. Inaba, K. Naito, J. Solid State Chem. 1976, 18, 279.Search in Google Scholar

[13] K. H. Cheng, M. S. Whittingham, Solid State Ionics1980, 1, 151.10.1016/0167-2738(80)90030-2Search in Google Scholar

[14] P. G. Dickens, S. A. Kay, Solid State Ionics1983, 8, 291.10.1016/0167-2738(83)90003-6Search in Google Scholar

[15] R. J. Cava, A. Santoro, D. W. Murphy, S. M. Zahurak, R. S. Roth, J. Solid State Chem. 1983, 50, 121.Search in Google Scholar

[16] K. R. Dey, C. H. Rüscher, Th. M. Gesing, A. Hussain, Mat. Res. Bull. 2007, 42, 591.Search in Google Scholar

[17] M. J. Sienko, T. B. N. Troung, J. Am. Chem. Soc. 1961, 83, 3939.Search in Google Scholar

[18] M. Green, Z. Hussain, J. Appl. Phys. 1993, 74, 3451.Search in Google Scholar

[19] C. G. Granqvist, Sol. Energy Mater. & Sol. Cells2000, 60, 201.10.1016/S0927-0248(99)00088-4Search in Google Scholar

[20] M. Green, Ionics1999, 5, 161.Search in Google Scholar

[21] M. H. Kim, T. Y. Kang, Y. S. Jung, K. H. Kim, JAPAN. J. Appl. Phys. 2013, 52, 05EC03.Search in Google Scholar

[22] Y. Djaoued, S. Balaji, R. Brüning, J. Nanomater. 2012, DOI: 10.1155/2012/674168. Available at: in Google Scholar

[23] Q. Zhong, J. R. Dahn, K. Colbow, Phys. Rev.1992, B46, 2554.Search in Google Scholar

[24] G. M. Sheldrick, Shelxs-86, Program for Crystal Structure Determination, University of Göttingen, Germany, 1986.Search in Google Scholar

[25] G. M. Sheldrick, Shelxl-93, Program for Refinement of Crystal Structures, University of Göttingen, Germany, 1993.Search in Google Scholar

[26] A. C. Larson, R. B. Von. Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR (2004) 86.Search in Google Scholar

[27] M. A. Wechter, H. R. Shanks, A. F. Voigt, Inorg. Chem. 1968, 7, 845.Search in Google Scholar

[28] C. H. Rüscher, K. R. Dey, T. Debnath, I. Horn, A. Hussain, R. Glaum, J. Solid State Chem. 2008, 181, 90.Search in Google Scholar

[29] W. H. Jones Jr., E. A.Garbaty, R. G.Barnes, J. Chem. Phys. 1962, 36, 494.Search in Google Scholar

[30] E. Banks, A. Goldstein, Inorg. Chem. 1968, 5, 966.Search in Google Scholar

[31] R. D. Shannon, Acta Crystallogr. 1976, A32, 751.Search in Google Scholar

[32] A. J. Mark, I. D. Raistrick, R. A. Huggins, J. Electrochem. Soc. 1983, 130, 776.Search in Google Scholar

[33] P. S. Halasyamani, K.R. Poeppelmeier, Chem. Mater.1998, 10, 2753.Search in Google Scholar

[34] A. D. Walkingshaw, N. A. Spaldin, E. Artacho, Phys. Rev.2004, B70, 165110.Search in Google Scholar

Supplemental Material

The online version of this article (DOI: 10.1515/zkri-2014-1777) offers supplementary material, available to authorized users.

Received: 2014-6-4
Accepted: 2014-8-26
Published Online: 2014-10-14
Published in Print: 2014-12-1

©2014 by De Gruyter

Downloaded on 29.11.2023 from
Scroll to top button