Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag October 28, 2014

Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms

Christian A. Schröder, Sanjib Saha, Klaus Huber, Stefano Leoni and Michael Wiebcke

Abstract

In this report, we summarize our experimental and theoretical investigations in the zinc(II) imidazolate, [Zn(im)2], and zinc(II) 4,5-dichloroimidazolate, [Zn(dcim)2], systems that have been published previously. This comprises a study on the thermodynamic stabilities of the two densest phases with coi and zni framework structures in the [Zn(im)2] system including the discovery and characterization of a new [Zn(im)2·0.5py]-neb phase (py = pyridine), a study on the mechanism of formation of the [Zn(im)2]-zni phase as well as a study on the discovery and characterization of a new [Zn(dcim)2]-SOD phase. In addition, we present as yet unpublished work. This concerns the discovery and characterization of a new [Zn(im)2·0.5mor]-neb phase (mor = morpholine) and investigations of the mechanisms of crystallization of [Zn(im)2·0.5py]-neb and [Zn(im)2·0.5mor]-neb as well as an evalutation of time-resolved SAXS/WAXS data recorded in-situ during the formation of [Zn(im)2]-zni.


Corresponding author: Michael Wiebcke, Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstrasse 9, 30167 Hannover, Germany, E-mail:

Acknowledgments

Provision of beamtime at beamline ID02 by ESRF and at beamline F3 by DESY is gratefully acknowledged. We thank Dr. D. Pontoni and Dr. T. Narayanan (ESRF) for fruitful scientific discussions and support at beamline ID02, and Prof. W. Bensch (Christian-Albrechts-Universität zu Kiel) for loan of his heating device used for the EDXRD experiments at beamline F3. We also thank Maria E. Schweinefuß, Sergej Springer and Dr. T. Hikov for their assistance during synchrotron experiments. Financial support by the Deutsche Forschungsgemeinschaft within the framework of the priority program 1415 (“Crystalline Non-Equilibrium Phases”) is gratefully acknowledged.

References

[1] J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev.2012, 112, 1001. Search in Google Scholar

[2] Y.-Q. Tian, C.-X. Cai, Y. Ji, X.-Z. You, S.-M. Peng, G.-H. Lee. [Co5(im)10·2MB]: A metal-organic open-framework with zeolite-like topology. Angew. Chem. Int. Ed.2002,41, 1384. Search in Google Scholar

[3] A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res.2010,43, 58. Search in Google Scholar

[4] P. J. Beldon, L. Fábián, R. S. Stein, A. Thirumurugan, A. K. Cheetham, T. Friscic, Rapid room-temperature synthesis of zeoltitic imidazolate frameworks by using mechanochemistry. Angew. Chem. Int. Ed.2010, 49, 9640. Search in Google Scholar

[5] Q. Shi, Z. Chen, Z. Song, J. Li, J. Dong, Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem. Int. Ed.2011, 50, 672. Search in Google Scholar

[6] O. Karagiaridi, W. Bury, A. A. Sarjeant, C. L. Stern, O. K. Farha, J. T. Hupp, Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange. Chem. Sci.2012, 3, 3256. Search in Google Scholar

[7] H. Fei, J. F. Cahill, K. A. Prather, S. M. Cohen, S. M. Cohen, Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg. Chem.2013, 52, 4011. Search in Google Scholar

[8] M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res.2008, 41, 1782. Reticular Chemistry Structure Resource: http://rcsr.anu.edu.au/. Search in Google Scholar

[9] I. A. Baburin, S. Leoni, G. Seifert, Enumeration of not-yet-synthesized zeolitic zinc imidazolate MOF networks: a topological and DFT approach. J. Phys. Chem.2008, B112, 9437. Search in Google Scholar

[10] D. W. Lewis, R. Ruiz-Salvador, A. Gómez, L. M. Rodriguez-Albelo, F.-X. Courdert, B. Slater, A. K. Cheetham, C. Mellot-Draznieks, Zeolitic imidazolate frameworks: structural and energetic trends compared with their zeolite analogues. CrystEngComm2009, 11, 2272. Search in Google Scholar

[11] I. A. Baburin, S. Leoni, Modelling polymorphs of metal-organic frameworks: a systematic study of diamondoid zinc imidazolates. CrystEngComm2010, 12, 2809. Search in Google Scholar

[12] I. A. Baburin, B. Assfour, G. Seifert, S. Leoni, Polymorphs of lithium-boron imidazolates: energy landscape and hydrogen storage properties. Dalton Trans.2011, 40, 3796. Search in Google Scholar

[13] R. Galvelis, B. Slater, A. K. Cheetham, C. Mellot-Draznieks, Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks. CrystEngComm2012, 14, 374. Search in Google Scholar

[14] J. T. Hughes, T. D. Bennett, A. K. Cheetham, A. Navrotsky, Thermochemistry of zeolitic imidazolate frameworks of varying porosity. J. Am. Chem. Soc.2013, 135, 598. Search in Google Scholar

[15] X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed.2006, 45, 1557. Search in Google Scholar

[16] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Expetional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Nat. Acad. Sci. USA2006, 103, 10186. Search in Google Scholar

[17] H. Hayashi, A. P. Côté, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Zeolite A imidazolate frameworks. Nature Mater.2007, 6, 501. Search in Google Scholar

[18] I. A. Barurin, S. Leoni, The energy landscapes of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazolate ring. J. Mater. Chem.2012, 22, 10152. Search in Google Scholar

[19] R. Galvelis, B. Slater, R. Chaudret, B. Creton, C. Nieto-Draghi, C. Mellot-Draznieks, Impact of functionalized linkers on the energy landscape of ZIFs. CrystEngComm2013, 15, 9603. Search in Google Scholar

[20] J. Anwar, D. Zahn, Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angew. Chem. Int. Ed.2011, 50, 1996. Search in Google Scholar

[21] J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater.2009, 21, 1410. Search in Google Scholar

[22] J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater.2011, 23, 2130. Search in Google Scholar

[23] J. Cravillon, C. A. Schröder, R. Nayuk, J. Gummel, K. Huber, M. Wiebcke, Fast nucleation and growth of ZIF-8 monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew. Chem. Int. Ed.2011, 50, 8067. Search in Google Scholar

[24] S. R. Venna, J. B. Jasinski, M. A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc.2010, 132, 18030. Search in Google Scholar

[25] J. Cravillon, C. A. Schröder, H. Bux, A. Rothkirch, J. Caro, M. Wiebcke, Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm2012, 14, 492. Search in Google Scholar

[26] P. Y. Moh, M. Brenda, M. W. Anderson, M. P. Attfield, Crystallisation of solvothermally synthesised ZIF-8 at the bulk, single crystal and surface level. CrystEngComm2013, 15, 9672. Search in Google Scholar

[27] M. Goesten, E. Stavitski, E. A. Pidko, C. Gücüyener, B. Boshuizen, S. N. Ehrlich, E. J. M. Hensen, F. Kapteijn, J. Gascon, The molecular pathway to ZIF-7 microrods revealed by in situ time-resolved small- and wide-angle X-ray scattering, quick-scanning extended X-ray absorption spectroscopy, and DFT calculations. Chem. Eur. J.2013, 19, 7809. Search in Google Scholar

[28] P. Y. Moh, P. Cubillas, M. W. Anderson, M. P. Attfield, revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8. J. Am. Chem. Soc.2011, 133, 13304. Search in Google Scholar

[29] P. Cubillas, M. W. Anderson, M. P. Attfield, Materials discovery and crystal growth of zeolite A type zeolitic-imidazolate frameworks revealed by atomic force microscopy. Chem. Eur. J.2013, 19, 8236. Search in Google Scholar

[30] T. Friscic, I. Halasz, P. J. Beldon, A. M. Belenguer, F. Adams, S. A. J. Kimber, V. Honkimäki, R. E. Dinnebier, Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chem.2013, 5, 66. Search in Google Scholar

[31] N. Pienack, W. Bensch, In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed.2011, 50, 2014. Search in Google Scholar

[32] C. A. Schröder, I. A. Baburin, L. van Wüllen, M. Wiebcke, S. Leoni, Subtle polymorphism of zinc imidazolate frameworks: temperature-dependend ground states in the energy landscape revealed by experiment and theory. CrystEngComm2013, 15, 4036. Search in Google Scholar

[33] T. Hikov, C. A. Schröder, J. Cravillon, M. Wiebcke, K. Huber, In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Phys. Chem. Chem. Phys.2012, 14, 511. Search in Google Scholar

[34] M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, M. Wiebcke, Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. Dalton Trans.2014, 43, 3528. Search in Google Scholar

[35] E. C. Spencer, R. J. Angel, N. L. Ross, B. E. Hanson, J. A. K. Howard, Pressure-induced cooperative bond rearrangemant in a zinc imidazolate framework: a high-pressure single-crystal X-ray diffraction study. J. Am. Chem. Soc.2009, 131, 4022. Search in Google Scholar

[36] A. Guinier, G. Fournet, Small-Angle Scattering of X-Rays, John Wiley & Sons, New York, p. 125, 1955. Search in Google Scholar

[37] G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Kolloid Z.1951, 124, 83. Search in Google Scholar

[38] G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr.1995, 28, 717. Search in Google Scholar

[39] L. Rayleigh, On the diffraction of light by spheres of small relative index. Proc. Roy. Soc. (London)1914, A90, 219. Search in Google Scholar

[40] Y.-Q. Tian, C.-X. Cai, X.-M. Ren, C.-Y. Duan, Y. Xu, S. Gao, X.-Z. You, The silica-like extended polymorphism of cobalt(II) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties. Chem. Eur. J.2003, 9, 5673. Search in Google Scholar

[41] M. Lanchas, D. Vallejo-Sánchez, G. Beobide, O. Castillo, A. T. Aguayo, A. Luque, R. Román, A direct reaction approach for the synthesis of zeolitic imidazolate frameworks: template and temperature mediated control on network topology and crystal size. Chem. Commun.2012, 48, 9930. Search in Google Scholar

[42] T. D. Bennett, A. L. Goodwin, M. T. Dove, D. A. Keen, M. G. Tucker, E. R. Barney, A. K. Soper, E. G. Bithell, J.-C. Tan, A. K. Cheetham, Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett.2010, 104, 115503. Search in Google Scholar

[43] J. D. Hancock, J. H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J. Am. Ceram. Soc.1972, 55, 74. Search in Google Scholar

[44] R. Kiebach, N. Pienack, W. Bensch, J.-D. Grunwaldt, A. Michailovski, A. Baiker, T. Fox, Y. Zhou, G. R. Patzke, Hydrothermal formation of W/Mo-oxides: a multidisciplinatory study of growth and shape. Chem. Mater.2008, 20, 3022. Search in Google Scholar

[45] L. Engelke, M. Schaefer, F. Porsch, W. Bensch, In-situ energy-dispersive X-ray diffraction studies of crystal growth and compound conversion under solvothermal conditions. Eur. J. Inorg. Chem.2003, 506. Search in Google Scholar

[46] J. D. Rodriguez-Blanco, S. Shaw, L. G. Benning, The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale2011, 3, 265. Search in Google Scholar

[47] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science2008, 319, 939. Search in Google Scholar

[48] W. Morris, B. Leung, H. Furukawa, O. K. Yaghi, N. He, H. Hayashi, Y. Houndonougbo, M. Asta, B. B. Laird, O. M. Yaghi, A combined experimental-computational investigation of the carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. J. Am. Chem. Soc.2010, 132, 11006. Search in Google Scholar

[49] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem. Eur. J.2011, 17, 6643. Search in Google Scholar

[50] T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda, S. Kitagawa, Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem. Int. Ed.2009, 48, 4739. Search in Google Scholar

[51] A. Umemura, S. Diring, S. Furukawa, H. Uehara, T. Tsuruoka, S. Kitagawa, Morphology design of porous coordiantion polymer crystals by coordination modulation. J. Am. Chem. Soc.2011, 133, 15506. Search in Google Scholar

[52] J.-P. Zhang, Y.-Y. Lin, X.-C. Huang, X.-M. Chen, Supramolecular isomerism within three-dimensional 3-connected nets: unusual synthesis and characterization of trimorphic copper(I) 3,5-dimethyl-1,2,4-triazolate. Dalton Trans.2005, 3681. Search in Google Scholar

[53] X.-C. Huang, J.-P. Zhang, X.-M. Chen, One-dimensional supramolecular isomerism of copper(I) and silver(I) imidazolate based on the ligand orientations. Cryst. Growth Des.2006, 6, 1194. Search in Google Scholar

[54] J.-P. Zhang, X.-C. Huang, X.-M. Chen, Supramolecular isomerism in coordination polymers. Chem. Soc. Rev.2009, 38, 2385. Search in Google Scholar

[55] P. Panine, S. Finet, T. M. Weiss, T. Narayanan, Probing fast kinetics in complex fluids by combined rapid mixing and small-angle X-ray scattering. Adv. Colloid Interface Sci.2006, 127, 9. Search in Google Scholar

[56] G. Sheldrick, A short history of SHELX, Acta Crystallogr. 2008, A64, 112. Search in Google Scholar

Received: 2014-7-25
Accepted: 2014-9-24
Published Online: 2014-10-28
Published in Print: 2014-12-1

©2014 by De Gruyter