Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 21, 2015

Formation of R44(8) ring in chloride salts of 8-hydroxyquinolinium derivatives: synthesis, structural, and theoretical studies

Gholamhossein Mohammadnezhad, Mostafa Mohammadpour Amini, Vratislav Langer and Maryam Adineh


The molecular structures of chloride salts of 2- and 5-substituted derivatives of 8-hydroxyquinoline, Me–H2Q+·Cl ([C10H10NO]Cl) and Cl–H2Q+·Cl ([C9H7ClNO]+·Cl), were determined by single crystal X-ray diffraction methods; the latter is a new polymorph. In the crystal structures of these salts, several intra- and inter-molecular interactions result in a step-shaped centrosymmetric R44(8) ring. Unlike most quinolinium salts, there was no solvent present in these structures. Protonation of the quinoline N atom had an effect on the N···O bite distances and C–N–C angle and greater conjugation of the benzene ring with a hydroxyl group was also observed. π–π Interactions between each pair of quinolinium rings were observed in Me–H2Q+·Cl but not in Cl–H2Q+·Cl. In addition, the quantum chemical calculations were performed on the new structures as well as similar compounds for comparison. The optimized structures were compared with the experimental observations for the effect of protonation and of hydrogen bonding interactions.

Corresponding author: Gholamhossein Mohammadnezhad, Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran, E-mail:


The authors thank the Vice-President’s Office for Research Affairs of Isfahan University of Technology (IUT) and Shahid Beheshti University for supporting this work.


[1] T. Banerjee, A. K. Basak, S. K. Mazumdar, S. Chaudhuri, Structure of 8-hydroxy-5-quinolinesulphonic acid dihydrate, C9H7NO4S.2H2O. Acta Crystallogr. Sect. C, Cryst. Struct. Commun. 1984, 40, 507.Search in Google Scholar

[2] J. M. S. Skakle, J. L. Wardell, S. M. S. V. Wardell, Formation of ladders from R44(8) and R66(12) rings in 8-hydroxyquinolinium chloride monohydrate: comparisons with the supramolecular arrangements in related salts. Acta Crystallogr. Sect. C, Cryst. Struct. Commun. 2006, 62, o312.Search in Google Scholar

[3] L. Infantes, J. Chisholm, S. Motherwell, Extended motifs from water and chemical functional groups in organic molecular crystals. CrystEngComm 2003, 5, 480.10.1039/b312846fSearch in Google Scholar

[4] G. Smith, U. D. Wermuth, J. M. White, Molecular recognition involving Kemp’s triacid: selectivity towards the 8-substituted quinoline system as seen in the cocrystalline adducts with 8-aminoquinoline and 8-hydroxyquinoline. Chem. Commun. 2000, 2349.10.1039/b004945jSearch in Google Scholar

[5] G. Smith, U. D. Wermuth, J. M. White, Hydrogen bonding in proton-transfer compounds of 5-sulfosalicylic acid with bicyclic heteroaromatic Lewis bases. Acta Crystallogr. Sect. C, Cryst. Struct. Commun. 2004, 60, o575.Search in Google Scholar

[6] M. Pudipeddi, A. T. M. Serajuddin, Trends in solubility of polymorphs. J. Pharm. Sci. 2005, 94, 929.Search in Google Scholar

[7] Z. Ma, B. Moulton, A novel polymorph of 5-chloro-8-hydroxyquinoline with improved water solubility and faster dissolution rate. J. Chem. Crystallogr. 2009, 39, 913.Search in Google Scholar

[8] D. Singhal, W. Curatolo, Drug polymorphism and dosage form design: a practical perspective. Adv. Drug Deliv. Rev. 2004, 56, 335.Search in Google Scholar

[9] T. Wang, G. Zeng, X. Li, H. Zeng, In vitro studies on the antioxidant and protective effect of 2-substituted -8-hydroxyquinoline derivatives against H2O2-induced oxidative stress in BMSCs. Chem. Biol. Drug Des. 2010, 75, 214.Search in Google Scholar

[10] S. Zhai, L. Yang, Q. C. Cui, Y. Sun, Q. P. Dou, B. Yan, Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells. J. Biol. Inorg. Chem. 2010, 15, 259.Search in Google Scholar

[11] M. M. Amini, G. Mohammadnezhad, H. R. Khavasi, Synthesis, crystal structure, and spectroscopic behavior of 8-hydroxyquinolato oxoalkoxo vanadium (V) complexes. J. Coord. Chem. 2012, 65, 2945.Search in Google Scholar

[12] G. Mohammadnezhad, A. R. Ghanbarpour, M. M. Amini, S. W. Ng, Bis(2-methylquinolin-8-olato-κ2N,O)lead(II). Acta Crystallogr. Sect. E, Struct Rep. 2010, 66, m529.Search in Google Scholar

[13] E. Sattarzadeh, G. Mohammadnezhad, M. M. Amini, S. W. Ng, 8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato-κ2N,O)zincate(II) methanol solvate. Acta Crystallogr. Sect. E, Struct Rep. 2009, 65, m553.Search in Google Scholar

[14] E. Sattarzadeh, G. Mohammadnezhad, M. M. Amini, S. W. Ng, Bis(μ-2-methylquinolin-8-olato)-κ3N,O:O3O:N,O-bis[(acetato-κO)(methanol-κO)zinc(II)]. Acta Crystallogr. Sect. E, Struct Rep. 2009, 65, m554.Search in Google Scholar

[15] R. Musiol, J. Jampilek, V. Buchta, L. Silva, H. Niedbala, B. Podeszwa, A. Palka, K. Majerz-Maniecka, B. Oleksyn, J. Polanski, Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006, 14, 3592.Search in Google Scholar

[16] J. Novakova, E. Vlkova, B. Bonusova, V. Rada, L. Kokoska, In vitro selective inhibitory effect of 8-hydroxyquinoline against bifidobacteria and clostridia. Anaerobe 2013, 22, 134.10.1016/j.anaerobe.2013.05.008Search in Google Scholar PubMed

[17] K. H. Lam, R. Gambari, K. K. H. Lee, Y. X. Chen, S. H. L Kok, R. S. M. Wong, F. Y. Lau, C. H. Cheng, W. Y. Wong, Z. X. Bian, A. S. C. Chan, J. C. O. Tang, C. H. Chui, Preparation of 8-hydroxyquinoline derivatives as potential antibiotics against Staphylococcus aureus. Bioorg. Med. Chem. Lett. 2014, 24, 367.Search in Google Scholar

[18] K. Kaur, M. Jain, R. P. Reddy, R. Jain, Quinolinesandstructurallyrelatedheterocyclesasantimalarials. Eur. J. Med. Chem., 2010, 45, 3245.Search in Google Scholar

[19] M. Orhan Puskullu, B. Tekiner, S. Suzen, Recent studies of antioxidant quinoline derivatives. Mini Rev. Med. Chem. 2013, 13, 365.Search in Google Scholar

[20] A. Shi, T. A. Nguyen, S. K. Battina, S. Rana, D. J. Takemoto, P. K. Chiang, D. H. Hua, Synthesis and anti-breast cancer activities of substituted quinolines. Bioorg. Med. Chem. Lett. 2008, 18, 3364.Search in Google Scholar

[21] D. Wang, J. Huang, X. Wang, Y. Yu, H. Zhang, Y. Chen, J. Liu, Z. Sun, H. Zou, D. Sun, G. Zhou, G. Zhang, Y. Lu, Y. Zhong, The eradication of breast cancer cells and stem cells by 8-hydroxyquinoline-loaded hyaluronan modified mesoporous silica nanoparticle-supported lipid bilayers containing docetaxel. Biomaterials, 2013, 34, 7662.Search in Google Scholar

[22] L. R. Naik, N. N. Math, Photo physical properties of 8-hydroxy quinoline. Indian J. Pure Appl. Phys. 2005, 43, 743.Search in Google Scholar

[23] R. J. Curry, W. P Gillin, 1.5 μm electroluminescence from erbium (III) tris(8-hydroxyquinoline) (ErQ) based organic light emitting diodes. Appl. Phys. Lett. 1999, 75, 1380.Search in Google Scholar

[24] V. Krishnakumar, R. Nagalakshmi, P. Janaki, Growth and spectroscopic characterization of a new organic nonlinear optical crystal – 8-hydroxyquinoline, Spectrochim. Acta Part A: Mol.Biomol.Spectrosc. 2005, 61, 1097.Search in Google Scholar

[25] B. T. Jahromi, A. N. Kharat, S. Foroutannejad, synthesis, characterization and cytotoxic activity of 8-hydroxyquinoline derivatives. Res. J. Pharm., Biol. Chem. Sci. 2011, 2, 61.Search in Google Scholar

[26] SMART (Version 5.63) and SAINT (Version 6.45): Area Detector Control and Integration Software, Bruker AXS Inc., Madison, WI, USA, 2003.Search in Google Scholar

[27] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. Sect. A, 2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[28] International Tables For X-ray Crystallography, Vol C, Kluwer Academic Publisher, Doordrecht, The Netherlands 1995.Search in Google Scholar

[29] DIAMOND: Brandenburg K., Crystal and Molecular Structure Visualization (Version 3.2f), Crystal Impact GbR, Bonn, Germany 2010.Search in Google Scholar

[30] J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615.Search in Google Scholar

[31] A. E. Reed, R. B. Weinstock, F. Weinhold, Natural population analysis. J. Chem. Phys. 1985, 83, 735.Search in Google Scholar

[32] A. E. Reed, L. A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899.Search in Google Scholar

[33] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision B.01. Gaussian, Inc., Wallingford CT, 2009.Search in Google Scholar

[34] G. B. Deacon, T. Dierkes, M. Hübner, P. C. Junk, Y. Lorenz, A. Urbatsch, Alkali metal/lanthanoid heterobimetallic complexes of 8-hydroxyquinolines accessed by pseudo-solid-state reactions. Eur. J. Inorg. Chem. 2011, 28, 4338.Search in Google Scholar

[35] P. Vranec, I. Potocnak, P. Repovsky, Low-dimensional compounds containing bioactive ligands. IV. Unusual ionic forms of 5-chloro-quinolin-8-ol. Acta Crystallogr. Sect. C, Cryst. Struct. Commun. 2012, 68, m370.Search in Google Scholar

[36] B. Moulton, M. J. Zaworotko, From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 101, 1629.Search in Google Scholar

[37] D. Firley, B. Fraisse, F. Zouhiri, A. S. Bire, D. Desmaele, J. d’Angeloc, N. E. Ghermani, 7-Carboxylato-8-hydroxy-2-methylquinolinium monohydrate and 7-carboxy-8-hydroxy-2-methylquinolinium chloride monohydrate at 100 K. Acta Crystallogr. Sect. C, Cryst. Struct. Commun. 2005, 61, o154.Search in Google Scholar

[38] A. J. Middleton, W. J. Marshall, N. S. Radu, Elucidation of the structure of a highly efficient blue electroluminescent material. J. Am. Chem. Soc. 2003, 125, 880.Search in Google Scholar

[39] C. Yue, F. Jiang, Y. Xu, D. Yuan, L. Chen, C. Yan, M. Hong, The aggregations and strong emissions of d8 and d10 metal– 8-hydroxyquinaldine complexes. Cryst. Growth Des. 2008, 8, 2721.Search in Google Scholar

[40] G. Mohammadnezhad, M. M. Amini, V. Langer, Two polymorphs of a lead(II) complex with 8-hydroxy-2-methylquinoline and thiocyanate. Acta Crystallogr. Sect. C, Cryst. Struct. Commun. 2010, 66, m44.Search in Google Scholar

[41] M. Vafaee, G. Mohammadnezhad, M. M. Amini, S. W. Ng, 8-Hydroxy-2-methylquinolinium tetrachlorido(quinolin-8-olato-κ2N,O)stannate(IV) acetonitrile monosolvate. Acta Crystallogr. Sect. E, Struct Rep. 2010, 66, m381.Search in Google Scholar

[42] T. Banerjee, N. N. Saha, Hydrogen-bonding patterns in 8-hydroxyquinoline derivatives: (I) structure of 5-chloro-8-hydroxyquinoline and (II) refinement of the structure of 8-hydroxyquinoline. Acta Crystallogr. Sect. C, Cryst. Struct. Commun. 1986, 42, 1408.Search in Google Scholar

[43] G. Malecki, J. E. Nycz, E. Ryrych, L. Ponikiewski, M. Nowak, J. Kusz, J. Pikies, Synthesis, spectroscopy and computational studies of some biologically important hydroxyhaloquinolines and their novel derivatives. J. Mol. Struct. 2010, 969, 130.Search in Google Scholar

[44] X. Wang, D. Shi, S. Tu, C. Yao, Synthesis and crystal structures of 2-amino-3-cyano-4-(2-chlorophenyl)-1,4-dihydro-2H-pyrano[3, 2-h]quinoline and 2-amino-3-cyano-4-(2-chlorophenyl)-8-(2-chlorobenzylidene)-1,4,5,6,7,8-hexahydrobenzo[b]pyran. J. Chem. Cryst. 2004, 34, 159.Search in Google Scholar

[45] T. Tan, Supramolecular helical architecture from the self-assemblies of 2-chloro-5-nitro-benzoic acid and organic bases. J. Mol. Struct. 2007, 840, 6.Search in Google Scholar

[46] N. Barooah, R. J. Sarma, A. S. Batsanov, J. B. Baruah, Structural aspects of adducts of N-phthaloylglycine and its derivatives. J. Mol. Struct. 2006, 791, 122.Search in Google Scholar

[47] J. E. Nycz, G. Malecki, L. Ponikiewski, M. Leboschka, M. Nowak, J. Kusz, Synthesis, spectroscopy and computational studies of some novel phosphorylated derivatives of quinoline-5,8-diones. J. Mol. Struct. 2011, 986, 39.Search in Google Scholar

[48] G. Mohammadnezhad Sh., M. M. Amini, S. W. Ng, Bis(μ-5-chloro-quinolin-8-olato)-κ3 N,O:O3 O:N,O-bis-[(acetato-κ2 O,O′)lead(II)]. Acta Crystallogr. Sect. E, Struct Rep. 2009, 65, m261.Search in Google Scholar

[49] M. Amati, S. Belviso, P. L. Cristinziano, C. Minichino, F. Lelj, 8-Hydroxyquinoline monomer, water adducts, and dimer. Environmental influences on structure, spectroscopic properties, and relative stability of cis and trans conformers. J. Phys. Chem. A 2007, 111, 13403.10.1021/jp074510sSearch in Google Scholar PubMed

Supplemental Material

The online version of this article (DOI: 10.1515/zkri-2014-1795) offers supplementary material, available to authorized users.

Received: 2014-7-29
Accepted: 2014-10-27
Published Online: 2015-1-21
Published in Print: 2015-3-1

©2015 by De Gruyter