Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 14, 2015

Dinuclear zinc(II) complex with tris(2-aminoethyl)amine ligand: synthesis, structure and properties

  • Güneş Süheyla Kürkçüoğlu EMAIL logo , Okan Zafer Yeşilel , Onur Şahin , Elvan Sayın and Orhan Büyükgüngör

Abstract

The dinuclear complex tris(2-aminoethyl)aminezinc(II)-μ-cyanothreecyanozincate(II) hemihydrate, [Zn(tren)Zn(μ-CN)(CN)3]·0.5H2O (1) (tren = tris(2-aminoethyl)amine), has been synthesized and characterized by spectral (FT-IR and Raman), elemental, thermal analysis (TG, DTG and DTA) as well as single crystal X-ray diffraction techniques. The asymmetric unit is composed of two Zn(II) ions, one tren ligand, four cyanide ligands and a half crystal water molecule which is situated at the special position. Zn1 ion exhibits tetrahedral coordination geometry with four carbon atoms of four cyanide ligands. Zn2 ion is five-coordinated by five nitrogen atoms from one tren and one cyanide ligands in a trigonal bipyramid coordination geometry. The cyanide nitrogen is in the axial position. Adjacent dinuclear units are connected by hydrogen bonding interactions to form three dimensional network. The decomposition reaction takes place in the temperature range 30–700 °C in the static air atmosphere.


Corresponding author: Güneş Süheyla Kürkçüoğlu, Faculty of Arts and Sciences, Department of Physics, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey, Phone: +90 222 2393750, Fax: +90 222 2393578, E-mail:

References

[1] K. Dunbar, R. A. Heintz, Chemistry of transition metal cyanide compounds: Modern perspectives. Prog. Inorg. Chem.1997, 45, 283.Search in Google Scholar

[2] A. G. Sharpe, Chemistry of cyano complexes of the transition metals. Academic Press, London, 1976.Search in Google Scholar

[3] B. Hoskins, R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4′″-tetracyanotetraphenylmethane]BF4·xC6H5NO2. J. Am. Chem. Soc.1990, 112, 1546.Search in Google Scholar

[4] T. Iwamoto, Supramolecular chemistry in cyanometallate system. Compr. Supramol. Chem. 1996, 6, 643.Search in Google Scholar

[5] L. Ouyang, P. M. Aguiar, R. J. Batchelor, S. Kroeker, D. B. Leznoff, A paramagnetic Cu(I)/Cu(II)/Zn(II) coordination polymer with multiple CN-binding modes and its solid-state NMR characterization. Chem. Commun.2006, 7, 744.Search in Google Scholar

[6] R. Curtis, C. Ratcliffe, J. Ripmeester, Structure and ordering in metal cyanide lattices: the use of doubly labelled cyanide (13C-15N) to simplify the 13C MAS NMR spectrum. J. Chem. Soc. Chem. Commun. 1992, 24, 1800.Search in Google Scholar

[7] H. Yuge, T. Iwamoto, Crystal structures of catena-[diligatocadmium(II) tetra-μ-cyanocadmate(II)] host clathrates: diamminecadmium(II) tetracyanocadmate (II)-benzene(1/2), diamminecadmium(II) tetracyanocadmate(II)-aniline(1/2), ethylenediaminecadmium(II) tetracyanocadmate(II)-aniline(1/2), and a novel type bis(aniline)cadmium(II) tetracyanocadmat(II)-aniline(2/1). J. Inclusion Phenom. Macrocyclic Chem.1992, 14, 217.Search in Google Scholar

[8] M. Kajňaková, J. Černák, V. Kavečanský, F. Gérard, T. Papageorgiou, M. Orendáč, A. Orendáčová, A. Feher, Magneto-structural correlations. Rietveld refinement of the three-dimensional crystal structure of Mn(en)Ni(CN)4 (en= ethylenediamine) and magnetic interactions through the [Ni(CN)4]2- anion. Solid State Sci.2006, 8, 203.Search in Google Scholar

[9] J. Cernak, I. Potocnak, J. Chomic, M. Dunaj-Jurco, Structure of catena-poly[bis (ethylenediamine)zinc(II)-μ-cyano-dicyanonickel(II)-μ-cyano]. Acta Crystallogr. Sect. C-Cryst. Struct. Commun.1990, 46, 1098.Search in Google Scholar

[10] S. W. Zhang, D. G. Fu, W. Y. Sun, Z. Hu, K. B. Yu, W. X. Tang, A New bimetallic assembly magnet [{Ni(tn)2}5{FeIII(CN)6}3]n(ClO4)n· 2.5nH2O (tn= trimethylenediamine) with a novel 3-D tunnel structure. Inorg. Chem.2000, 39, 1142.Search in Google Scholar

[11] J. Černák, J. Lipkowski, Two polymorphs of Cu(tn)Ni(CN)4 containing tetracyanonickellate anions with triple bridging function: Preparation and crystallographic characterization. Monatsh. Chem. Chem. Mon.1999, 130, 1195.Search in Google Scholar

[12] H. Zhang, J. Cai, X. L. Feng, H. Y. Sang, J. Z. Liu, X. Y. Li, L. N. Ji, Assembly chemistry of a cadmium(II) complex with cyanometalate anions [Fe(CN)5NO]2–, [Pd(CN)4]2– and [Pt(CN)6]2–. Polyhedron2002,21, 721.10.1016/S0277-5387(02)00846-XSearch in Google Scholar

[13] M. Noshin, M. Salavati-Niasari, TiO2 nanoparticle aggregations prepared by nitro-functionalized tripodal ligand as promising candidates for dye-sensitized solar cells. Mater. Sci. Semicond. Process.2014, 27, 702.Search in Google Scholar

[14] J. Atwood, W. Steed, Supramolecular Chemistry, 6th ed., Wiley and Sons, New York, 2009.Search in Google Scholar

[15] B. J. Holliday, C. A. Mirkin, Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem. Int. Edi.2001, 40, 2022.Search in Google Scholar

[16] B. Moulton, M. J. Zaworotko, From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev.2001, 101, 1629.Search in Google Scholar

[17] H. D. Lutz, Structure and strength of hydrogen bonds in inorganic solids. J. Mol. Struct.2003, 646, 227.Search in Google Scholar

[18] L. J. Prins, D. N. Reinhoudt, P. Timmerman. Noncovalent synthesis using hydrogen bonding. Angew. Chem. Int. Ed.2001, 40, 2382.Search in Google Scholar

[19] G. M. Sheldrick, Acta Cryst. A2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar

[20] Stoe&Cie, in Stoe&Cie, Darmstadt, Germany, 2002.Search in Google Scholar

[21] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, and P. A. Wood, Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr.2008, 41, 466.Search in Google Scholar

[22] L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst.1999, 32, 837.Search in Google Scholar

[23] J. K. Nag, P. K. Santra, C. Sinha, F. L. Liao, T. H Lu, Synthesis, spectral and electrochemical studies of 2-(arylazo)heterocycle complexes of zinc(II). Single-crystal X-ray structure of [Zn(papm)Cl2·CH3OH] (papm=2-(phenylazo)pyrimidine). Polyhedron2001, 20, 2253.10.1016/S0277-5387(01)00824-5Search in Google Scholar

[24] Y. Guo, R. Weiss, R. Boese, M. Epple, Synthesis, structural characterization and thermochemical reactivity of tris(ethylenediamine)zinc tetracyanozincate, a precursor for nanoscale ZnO. Thermochim. Acta2006, 446, 101.10.1016/j.tca.2006.01.002Search in Google Scholar

[25] J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Edit.1995, 34, 1555.Search in Google Scholar

[26] J. Yin, C. Li, X. Chen, Q. Luo, Infrared spectra and normal coordinate analysis of a model compound for superoxide dismutase. Spectrochim. Acta A1997, 53, 2209.10.1016/S1386-1425(97)00113-3Search in Google Scholar

[27] L. H. Jones, Vibrational spectrum and structure of metal cyanide complexes in the solid state-V: K2Zn(CN)4, K2Cd(CN)4 and K2Hg(CN)4. Spectrochim. Acta1961, 17, 188.10.1016/0371-1951(61)80064-7Search in Google Scholar

[28] D. M. Adams, R. E. Christopher, Low-frequency Infrared and single-crystal Raman spectra of dipotassium tetracyanozincate(II). Inorg. Chem.1973, 12, 1609.Search in Google Scholar

[29] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, PartB: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed., Wiley and Sons, NewYork, 1997.Search in Google Scholar


Supplemental Material

The online version of this article (DOI: 10.1515/zkri-2014-1814) offers supplementary material, available to authorized users.


Received: 2014-10-30
Accepted: 2015-2-11
Published Online: 2015-3-14
Published in Print: 2015-6-1

©2015 by De Gruyter

Downloaded on 5.12.2023 from https://www.degruyter.com/document/doi/10.1515/zkri-2014-1814/pdf
Scroll to top button