Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 11, 2015

Synthesis, structure and thermal study of a new 3-aminopyrazine-2-carboxylate based zinc(II) coordination polymer

Anirban Karmakar and Susanta Hazra

Abstract

A two-dimensional coordination polymer [Zn(L)2]n (1) (L = 3-aminopyrazine-2-carboxylate) synthesized from the solvothermal reaction of zinc(II) salt with 3-aminopyrazine-2-carboxylic acid (HL) is described. Compound 1 has been characterized by single X-ray diffraction, IR spectra and thermogravimetric analyses. Crystal structure analysis reveals that each hexacoordinated zinc(II) center adopts a distorted octahedral geometry occupied by three Ocarboxylate and three Npyrazine atoms. The L ligand binds the metal cation by means of a pyrazine N-atom and one, or both, carboxylate O-atoms. A three-dimensional supramolecular associate in the crystal lattice of 1 has been stabilized by a number of non-covalent interactions. The IR spectroscopic and TGA properties are investigated in this work. Topological analysis of the two-dimensional network has been also discussed.


Corresponding author: Anirban Karmakar, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001, Lisbon, Portugal, E-mail: ; and Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden

Acknowledgments

Financial supports from the Fundação para a Ciência e a Tecnologia (FCT), Portugal for fellowship grants (Ref. Nos. SFRH/BPD/76192/2011 and SFRH/BPD/78264/2011) to A. Karmakar and S. Hazra are gratefully acknowledged.

References

[1] H.-C. J. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev.2014, 43, 5415.Search in Google Scholar

[2] Z.-J. Lin, J. Lü, M. Hong, R. Cao, Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev.2014, 43, 5867.Search in Google Scholar

[3] A. Karmakar, I. Goldberg, Coordination polymers of flexible tetracarboxylic acids with metal ions. II. Supramolecular assemblies of 5,5′-methylene- and 5,5′-(ethane-1,2-diyl)-bis(oxy)diisophthalic acid ligands with d-transition metals. CrystEngComm.2011, 13, 350.Search in Google Scholar

[4] A. Karmakar, I. Goldberg, Coordination polymers of flexible tetracarboxylic acids with metal ions. I. Synthesis of CH2- and (CH2)2-spaced bis(oxy)isophthalic acid ligands and structural characterization of their polymeric adducts with lanthanoid ions. CrystEngComm. 2011, 13, 339.Search in Google Scholar

[5] M. Eddaoudi, D. F. Sava, J. F. Eubank, K. Adil, V. Guillerm, Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis and properties. Chem. Soc. Rev.2015, 44, 228.Search in Google Scholar

[6] M. O’Keeffe, O. M. Yaghi, Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev.2012, 112, 675.Search in Google Scholar

[7] O. R. Evans, W. Lin, Crystal engineering of NLO materials based on metal–organic coordination networks. Acc. Chem. Res.2002, 35, 511.Search in Google Scholar

[8] C. Wang, T. Zhang, W. Lin, Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem. Rev.2012, 112, 1084.Search in Google Scholar

[9] Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal–organic frameworks. Chem. Soc. Rev.2014, 43, 5657.Search in Google Scholar

[10] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Carbon dioxide capture in metal–organic frameworks. Chem. Rev.2012, 112, 724.Search in Google Scholar

[11] M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev.2012, 112, 782.Search in Google Scholar

[12] A. Karmakar, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Zinc metal–organic frameworks: efficient catalysts for the diastereoselective Henry reaction and transesterification. Dalton Trans. 2014, 43, 7795.Search in Google Scholar

[13] A. Karmakar, S. Hazra, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Synthesis, structure and catalytic application of lead(II) complexes in cyanosilylation reactions. Dalton Trans. 2015, 44, 268.Search in Google Scholar

[14] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev.2014, 43, 6011.Search in Google Scholar

[15] A. J. Fletcher, E. J. Cussen, D. Bradshaw, M. J. Rosseinsky, K. M. Thomas, Adsorption of gases and vapors on nanoporous Ni2(4,4′-Bipyridine)3(NO3)4 metal–organic framework materials templated with methanol and ethanol: structural effects in adsorption kinetics. J. Am. Chem. Soc.2004, 126, 9750.Search in Google Scholar

[16] L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. E. M. Denayer, D. E. De Vos, Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew. Chem. Int. Ed.2007, 46, 4293.Search in Google Scholar

[17] O. K. Farha, A. M. Spokoyny, K. L. Mulfort, M. F. Hawthorne, C. A. Mirkin, J. T. Hupp, Synthesis and hydrogen sorption properties of carborane based metal–organic framework materials. J. Am. Chem. Soc.2007, 129, 12680.Search in Google Scholar

[18] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res.2001, 34, 319.Search in Google Scholar

[19] Y. He, B. Li, M. O’Keeffe, B. Chen, Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev.2014, 43, 5618.Search in Google Scholar

[20] S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc.2007, 129, 14176.Search in Google Scholar

[21] K. Hirai, S. Furukawa, M. Kondo, M. Meilikhov, Y. Sakata, O. Sakata, S. Kitagawa, Targeted functionalisation of a hierarchically-structured porous coordination polymer crystal enhances its entire function. Chem. Commun.2012, 48, 6472.Search in Google Scholar

[22] D. Sun, S. Ma, Y. Ke, D. J. Collins, H. Zhou, An interweaving MOF with high hydrogen uptake. J. Am. Chem. Soc.2006, 128, 3896.Search in Google Scholar

[23] B. Chen, M. Eddaoudi, S. T. Hyde, M. O’Keeffe, O. M. Yaghi, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science2001, 291, 1021.10.1126/science.1056598Search in Google Scholar PubMed

[24] K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant, J. T. Hupp, Post-synthesis alkoxide formation within metal–organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc.2009, 131, 3866.Search in Google Scholar

[25] L. Ma, D. J. Mihalcik, W. Lin, Highly porous and robust 4,8-connected metal–organic frameworks for hydrogen storage. J. Am. Chem. Soc.2009, 131, 4610.Search in Google Scholar

[26] Y. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. C. Kravtsov, R. Luebke, M. Eddaoudi, Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew. Chem. Int. Ed.2007, 46, 3278.Search in Google Scholar

[27] W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III, M. Bosch, H.-C. Zhou, Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev.2014, 43, 5561.Search in Google Scholar

[28] D. Bradshaw, S. El-Hankari, L. Lupica-Spagnolo, Supramolecular templating of hierarchically porous metal–organic frameworks. Chem. Soc. Rev. 2014, 43, 5431.Search in Google Scholar

[29] R. Tayebee, V. Amani, H. R. Khavasi, Supramolecular architecture from a sodium coordination polymer with a 3D net containing 3-aminopyrazine-2-carboxylic acid (APZC): synthesis, characterization and crystal structure of [Na2(APZC)2(μ-H2O)2(μ3-H2O)]n. Chin. J. Chem.2008, 26, 500.Search in Google Scholar

[30] W. Starosta, J. Leciejewicz, catena-Poly[[bis(μ-3-aminopyrazine-2-carboxylato)-κ3N1,O:O;κ3O:N1,O)-dilithium]-di-μ-aqua]. Acta Cryst.2010, E66, m744.Search in Google Scholar

[31] X.-L. Cheng, S. Gao, S. W. Ng, Ammonium tris(3-aminopyrazine-2-carboxylato-κ2N1,O)nickelate(II) trihydrate. Acta Cryst.2009, E65, m1631.Search in Google Scholar

[32] S. Gao, S. W. Ng, (3-Aminopyrazin-4-ium-2-carboxylate-κ2N1,O)diaquazinc(II)dinitrate. Acta Cryst.2010, E66, m1466.Search in Google Scholar

[33] Z.-P. Deng, W. Kang, L.-H. Huo, H. Zhao, S. Gao, Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence. Dalton Trans.2010, 39, 6276.Search in Google Scholar

[34] T. Sunahara, S. Onaka, M. Ito, H. Imai, K. Inoue, T. Ozeki, Construction of nano-channels based on zinc(II) pyrazine-2-carboxylate complexes. Eur. J. Inorg. Chem.2004, 4882.10.1002/ejic.200400438Search in Google Scholar

[35] J.-M. Li, J.-M. Shi, C.-J. Wu, W. Xu, Synthesis, crystal structure and fluorescence of a 1-D polymeric zinc(II) complex with pyrazine-2-carboxylate as a bridging ligand. J. Coord. Chem.2003, 56, 869.Search in Google Scholar

[36] X. Hu, Y.-P. Li, Y.-J. Wang, W.-J. Du, J.-X. Guo, Synthesis and crystal structures of two complexes with carboxylic derivatives of nitrogen-containing heterocycle ligands. J. Chem. Cryst.2010, 40, 846.Search in Google Scholar

[37] G. Fan, S.-P. Chen, S.-L. Gao, Diaqua(5-methylpyrazine-2-carboxylato-κ2N,O)zinc(II). Acta Cryst.2007, E63, m774.Search in Google Scholar

[38] Y.-M. Cui, J. Li, X. Zhang, Q.-F. Zeng, Aquabis(5-methylpyrazine-2-carboxylato)zinc(II) trihydrate. Acta Cryst.2009, E65, m1083.Search in Google Scholar

[39] Bruker–Nonius, APEX-II, SAINT-Plus and TWINABS Bruker–Nonius AXS Inc., Madison, WI, 2004.Search in Google Scholar

[40] G. M. Sheldrick, SAINT (version 6 02), SADABS (version 2 03). Bruker AXS Inc., Madison, WI, 2002.Search in Google Scholar

[41] SHELXTL (version 6 10). Bruker AXS Inc., Madison, WI, 2002.Search in Google Scholar

[42] G. M. Sheldrick, SHELXL-97, Crystal Structure Refinement Program. University of Gottingen, 1997.Search in Google Scholar

[43] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edition, Wiley & Sons, New York, 1997.Search in Google Scholar

[44] V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied topological analysis of crystal structures with the Program Package ToposPro. Cryst. Growth Des.2014, 14, 3576.Search in Google Scholar


Supplemental Material

The online version of this article (DOI: 10.1515/zkri-2014-1828) offers supplementary material, available to authorized users.


Received: 2014-12-21
Accepted: 2015-2-11
Published Online: 2015-3-11
Published in Print: 2015-6-1

©2015 by De Gruyter

Scroll Up Arrow