Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag July 13, 2016

Ternary silicides ScIr4Si2 and RERh4Si2 (RE = Sc, Y, Tb-Lu) and quaternary derivatives RERh4Si2–xSnx (RE = Y, Nd, Sm, Gd-Lu) – structure, chemical bonding, and solid state NMR spectroscopy

Daniel Voßwinkel, Christopher Benndorf, Hellmut Eckert, Samir F. Matar and Rainer Pöttgen

Abstract

The silicides ScIr4Si2 and RERh4Si2 (RE=Sc, Y, Tb-Lu) and silicide stannides RERh4Si2–xSnx (RE=Y, Nd, Sm, Gd-Lu) were synthesized from the elements by arc-melting and subsequent annealing. The new compounds crystallize with the orthorhombic YRh4Ge2 type structure, space group Pnma. They were characterized by X-ray powder patterns and several structures were refined from single crystal X-ray diffractometer data. The main structural motifs of this series of silicides are tricapped trigonal prisms formed by the transition metal and rare earth atoms. One of the two crystallographically independent silicon sites allows for formation of solid solutions with tin, exemplarily studied for ErRh4Si2–xSnx. Electronic structure calculations reveal strong covalent Rh–Si bonding as the main stability factor. Multinuclear (29Si, 45Sc, and 89Y) magic-angle spinning (MAS) NMR spectra of the structure representatives with diamagnetic rare-earth elements (Sc, Y, Lu) are found to be consistent with the crystallographic data and specifically confirm the selective substitution of Sn in the Si2 sites in the quaternary compounds YRh4SiSn and LuRh4SiSn.

Acknowledgments

We thank Dipl.-Ing. U. Ch. Rodewald for collection of the single crystal diffractometer data. Support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

[1] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2015/16), ASM International®, Materials Park, Ohio (USA), 2015. Search in Google Scholar

[2] G. Knebel, C. Eggert, D. Engelmann, R. Viana, A. Krimmel, M. Dressel, A. Loidl, Phys. Rev. B1996, 53, 11586. Search in Google Scholar

[3] S. Tuncel, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 2007, 633, 986. Search in Google Scholar

[4] J. T. Zhao, E. Parthé, Acta Crystallogr. C1990, 46, 2273. Search in Google Scholar

[5] M. Chondroudi, M. Balasubramanian, U. Welp, W.-K. Kwok, M. G. Kanatzidis, Chem. Mater. 2007, 19, 4769. Search in Google Scholar

[6] A. Oliynyk, S. S. Stoyko, A. Mar, Inorg. Chem. 2013, 52, 8264. Search in Google Scholar

[7] D. Voßwinkel, O. Niehaus, B. Gerke, C. Benndorf, H. Eckert, R. Pöttgen, Z. Anorg. Allg. Chem. 2015, 641, 238. Search in Google Scholar

[8] D. Voßwinkel, S. F. Matar, R. Pöttgen, Monatsh. Chem. 2015, 146, 1375. Search in Google Scholar

[9] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133. Search in Google Scholar

[10] A. V. Morozkin, Yu. D. Seropegin, O. I. Bodak, J. Alloys Compd. 1996, 234, 143. Search in Google Scholar

[11] A. V. Morozkin, Yu. D. Seropegin, J. Alloys Compd. 1996, 237, 124. Search in Google Scholar

[12] A. V. Morozkin, Yu. D. Seropegin, I. A. Sviridov, O. I. Bodak, J. Alloys Compd. 1998, 274, L1. Search in Google Scholar

[13] W. Jeitschko, E. J. Reinbold, Z. Naturforsch. 1985, 40b, 900. Search in Google Scholar

[14] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73. Search in Google Scholar

[15] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133. Search in Google Scholar

[16] P. Hohenberg, W. Kohn, Phys. Rev. 1965, 136, B864. Search in Google Scholar

[17] A. R. Williams, J. Kübler, C. D. Gelatt Jr., Phys. Rev. B1979, 19, 6094. Search in Google Scholar

[18] V. Eyert, Int. J. Quantum Chem. 2000, 77, 1007. Search in Google Scholar

[19] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. Search in Google Scholar

[20] P. E. Blöchl, Phys. Rev. B1994, 50, 17953. Search in Google Scholar

[21] R. Hoffmann, Angew. Chem. Int. Ed. Engl. 1987, 26, 846. Search in Google Scholar

[22] Bruker Corp., Topspin (Version 2.1), Karlsruhe, Germany, 2008. Search in Google Scholar

[23] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 2002, 40, 70. Search in Google Scholar

[24] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345. Search in Google Scholar

[25] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edition, Springer, Berlin (Germany), 1993. Search in Google Scholar

[26] J. Emsley, The Elements, Oxford University Press, Oxford (U.K.), 1999. Search in Google Scholar

[27] J. Donohue, The Structures of the Elements, Wiley, New York, 1974. Search in Google Scholar

[28] R. Pöttgen, Z. Naturforsch. 2006, 61b, 677. Search in Google Scholar

[29] C. Benndorf, O. Niehaus, H. Eckert, O. Janka, Z. Anorg. Allg. Chem. 2015, 641, 168. Search in Google Scholar

[30] M. Johnscher, S. Stein, O. Niehaus, C. Benndorf, L. Heletta, M. Kersting, C. Höting, H. Eckert, R. Pöttgen, Solid State Sci. 2016, 52, 57. Search in Google Scholar

[31] T. Harmening, H. Eckert, C. M. Fehse, C. P. Sebastian, R. Pöttgen, J. Solid State Chem. 2011, 184, 3303. Search in Google Scholar

[32] C. Benndorf, H. Eckert, R. Pöttgen, Dalton Trans.2016, 45, 8215. Search in Google Scholar

Received: 2016-5-10
Accepted: 2016-6-25
Published Online: 2016-7-13
Published in Print: 2016-8-1

©2016 Walter de Gruyter GmbH, Berlin/Boston