Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 22, 2016

Structure and ion dynamics of mechanosynthesized oxides and fluorides

Access to nanocrystalline ceramics via high-energy ball-milling – a short review
  • Martin Wilkening EMAIL logo , Andre Düvel , Florian Preishuber-Pflügl , Klebson da Silva , Stefan Breuer , Vladimir Šepelák EMAIL logo and Paul Heitjans EMAIL logo

Abstract

In many cases, limitations in conventional synthesis routes hamper the accessibility to materials with properties that have been predicted by theory. For instance, metastable compounds with local non-equilibrium structures can hardly be accessed by solid-state preparation techniques often requiring high synthesis temperatures. Also other ways of preparation lead to the thermodynamically stable rather than metastable products. Fortunately, such hurdles can be overcome by mechanochemical synthesis. Mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis of not only new, metastable compounds but also of nanocrystalline materials with unusual or enhanced properties such as ion transport. In this short review we report about local structures and ion transport of oxides and fluorides mechanochemically prepared by high-energy ball-milling.

Acknowledgments

This short review on mechanosynthesized fluorides and oxides includes selected examples of our studies over the last 6 years (2010–2016) that were funded by the Deutsche Forschungsgemeinschaft (DFG) in the frame of the Priority Programme SPP 1415. We thank our colleagues in Hannover, Karlsruhe and Graz for their help and valuable discussions in achieving the goals of the joint project called “Mechanochemistry of non-equilibrium oxide and fluoride phases: mechanosynthesis, solid state kinetics and spectroscopic properties”. Furthermore, the authors thank Professor K. D. Becker for his continuous and supporting interest in their work. Financial support by the DFG is greatly appreciated.

References

[1] S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K. D. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev.2012, 41, 413.10.1039/C1CS15171ASearch in Google Scholar

[2] P. Baláž, M. Achimovicova, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutkova, E. Gaffet, F. J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev.2013, 42, 7571.10.1039/c3cs35468gSearch in Google Scholar PubMed

[3] V. Šepelák, A. Düvel, M. Wilkening, K. D. Becker, P. Heitjans, Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev.2013, 42, 7507.10.1039/c2cs35462dSearch in Google Scholar PubMed

[4] F. Preishuber-Pflügl, M. Wilkening, Mechanochemically synthesized fluorides: local structures and ion transport. Dalton. Trans.2016, 45, 8675.10.1039/C6DT00944ASearch in Google Scholar PubMed

[5] P. Heitjans, S. Indris, Diffusion and ionic conduction in nanocrystalline ceramics. J. Phys.: Condens. Matter.2003, 15, R1257.Search in Google Scholar

[6] S. Indris, D. Bork, P. Heitjans, Nanocrystalline oxide ceramics prepared by high-energy ball milling. J. Mater. Synth. Process.2000, 8, 245.10.1023/A:1011324429011Search in Google Scholar

[7] M. Wilkening, V. Epp, A. Feldhoff, P. Heitjans, Tuning the Li diffusivity of poor ionic conductors by mechanical treatment: high Li conductivity of strongly defective LiTaO3 nanoparticles. J. Phys. Chem. C2008, 112, 9291.10.1021/jp801537sSearch in Google Scholar

[8] P. Heitjans, E. Tobschall, M. Wilkening, Ion transport and diffusion in nanocrystalline and glassy ceramics. Eur. Phys. J. – Spec. Top.2008, 16,1 97.10.1140/epjst/e2008-00753-4Search in Google Scholar

[9] V. Epp, M. Wilkening, Motion of Li+ in nanoengineered LiBH4 and LiBH4:Al2O3 comparison with the microcrystalline form. ChemPhysChem2013, 14, 3706.10.1002/cphc.201300743Search in Google Scholar PubMed

[10] A. Düvel, J. Bednarcik, V. Šepelák, P. Heitjans, Mechanosynthesis of the fast fluoride ion conductor Ba1–xLaxF2+x: from the fluorite to the tysonite structure. J. Phys. Chem. C2014, 118, 7117.10.1021/jp410018tSearch in Google Scholar

[11] G. Scholz, S. Breitfeld, T. Krahl, A. Düvel, P. Heitjans, E. Kemnitz, Mechanochemical synthesis of MgF2 – MF2 composite systems (M=Ca, Sr, Ba). Solid State Sci.2015, 50, 32.10.1016/j.solidstatesciences.2015.10.004Search in Google Scholar

[12] S. Kipp, V. Šepelák, K. D. Becker, Mechanochemistry. Chem. unserer Zeit2005, 39, 384.10.1002/ciuz.200500355Search in Google Scholar

[13] V. Šepelák, I. Bergmann, S. Kipp, K. D. Becker, Nanocrystalline ferrites prepared by mechanical activation and mechanosynthesis. Z. Anorg. Allg. Chem.2005, 631, 993.10.1002/zaac.200500020Search in Google Scholar

[14] A. Düvel, B. Ruprecht, P. Heitjans, M. Wilkening, Mixed alkaline-earth effect in the metastable anion conductor Ba1–xCaxF2 (0 ≤ x ≤ 1): correlating long-range ion transport with local structures revealed by ultrafast 19F MAS NMR. J. Phys. Chem. C2011, 115, 23784.10.1021/jp208472fSearch in Google Scholar

[15] B. Ruprecht, M. Wilkening, A. Feldhoff, S. Steuernagel, P. Heitjans, High anion conductivity in a ternary non-equilibrium phase of BaF2 and CaF2 with mixed cations. Phys. Chem. Chem. Phys.2009, 11, 3071.10.1039/b901293aSearch in Google Scholar PubMed

[16] B. Ruprecht, M. Wilkening, S. Steuernagel, P. Heitjans, Anion diffusivity in highly conductive nanocrystalline BaF2:CaF2 composites prepared by high-energy ball milling. J. Mater. Chem.2008, 18, 5412.10.1039/b811453fSearch in Google Scholar

[17] F. Preishuber-Pflügl, P. Bottke, V. Pregartner, B. Bitschnau, M. Wilkening, Correlated fluorine diffusion and ionic conduction in the nanocrystalline F- solid electrolyte Ba0.6La0.4F2.4 - 19F T NMR relaxation vs. conductivity measurements. Phys. Chem. Chem. Phys.2014, 16, 9580.10.1039/C4CP00422ASearch in Google Scholar

[18] F. Preishuber-Pflügl, V. Epp, S. Nakhal, M. Lerch, M. Wilkening, Defect-enhanced F- ion conductivity in layer-structured nanocrystalline BaSnF4 prepared by high-energy ball milling combined with soft annealing. Phys. Status Solidi C2015, 12, 10.10.1002/pssc.201400193Search in Google Scholar

[19] F. Preishuber-Pflügl, M. Wilkening, Evidence of low dimensional ion transport in mechanosynthesized nanocrystalline BaMgF4. Dalton. Trans.2014, 43, 9901.10.1039/C4DT00904ESearch in Google Scholar PubMed

[20] D. Wohlmuth, V. Epp, M. Wilkening, Fast Li ion dynamics in the solid electrolyte Li7P3S11 as probed by 6,7Li NMR spin-lattice relaxation. ChemPhysChem2015, 16, 2582.10.1002/cphc.201500321Search in Google Scholar PubMed

[21] C. Rongeat, M. A. Reddy, R. Witter, M. Fichtner, Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries. J. Phys. Chem. C2013, 117, 4943.10.1021/jp3117825Search in Google Scholar

[22] C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci.2001, 46, 1.10.1201/9780203020647Search in Google Scholar

[23] F. P. Bowden, D. Tabor, The friction and lubrication of solids, Clarendon Press, Oxford, 1958.Search in Google Scholar

[24] F. P. Bowden, A. Yoffe. Initiation and growth of explosion in liquids and solids, Cambridge University Press, Cambridge, 1952.10.1119/1.1933188Search in Google Scholar

[25] F. P. Bowden, A. Yoffe, Fast reactions in solids, Butterworths, London, 1958.Search in Google Scholar

[26] P. A. Thiessen, K. Meyer, G. Heinicke Grundlagen der Tribochemie; Akademie-Verlag, Berlin, 1967.10.1515/9783112649022Search in Google Scholar

[27] P. Baláž. Mechanochemistry in nanoscience and minerals engineering; Springer-Verlag, Berlin, 2008.Search in Google Scholar

[28] A. Chadwick, S. Savin, Structure and dynamics in nanoionic materials. Solid State Ion.2006, 177, 3001.10.1016/j.ssi.2006.07.046Search in Google Scholar

[29] P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening, NMR and impedance studies of nanocrystalline and amorphous ion conductors: lithium niobate as a model system. Faraday Discuss.2007, 134, 67.10.1039/B602887JSearch in Google Scholar PubMed

[30] D. Wohlmuth, V. Epp, B. Stanje, A. M. Welsch, H. Behrens, M. Wilkening, High-energy mechanical treatment boosts ion transport in nanocrystalline Li2B4O7. J. Am. Ceram. Soc.2016, 99, 1687.10.1111/jace.14165Search in Google Scholar

[31] H. Brandstätter, D. Wohlmuth, P. Bottke, V. Pregartner, M. Wilkening, Li ion dynamics in nanocrystalline and structurally disordered Li2TiO3. Z. Phys. Chem.2015, 229, 1363.10.1515/zpch-2014-0665Search in Google Scholar

[32] R. Malik, D. Burch, M. Bazant, G. Ceder, Particle size dependence of the ionic diffusivity. Nano Lett.2010, 10, 4123.10.1021/nl1023595Search in Google Scholar PubMed

[33] L. W. Ji, Z. Lin, M. Alcoutlabi, X. W. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy. Environ. Sci.2011, 4, 2682.10.1039/c0ee00699hSearch in Google Scholar

[34] C. Liu, F. Li, L. P. Ma, H. M. Cheng, Advanced materials for energy storage. Adv. Mater.2010, 22, E28.10.1002/adma.200903328Search in Google Scholar PubMed

[35] M. Holzapfel, H. Buqa, L. J. Hardwick, M. Hahn, A. Würsig, W. Scheifele, P. Novák, R. Kötz, C. Veit, F. M. Petrat, Nano silicon for lithium-ion batteries. Electrochim. Acta2006, 52, 973.10.1016/j.electacta.2006.06.034Search in Google Scholar

[36] A. Dunst, V. Epp, I. Hanzu, S. A. Freunberger, M. Wilkening, Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2 - the discharge product in lithium-air batteries. Energy. Environ. Sci.2014, 7, 2739.10.1039/C4EE00496ESearch in Google Scholar

[37] A. Dunst, M. Sternad, M. Wilkening, Overall conductivity and NCL-type relaxation behavior in nanocrystalline sodium peroxide Na2O2 – consequences for Na-oxygen batteries. Mat. Sci. Engin. B2016, 211, 85.10.1016/j.mseb.2016.06.002Search in Google Scholar

[38] W. Puin, P. Heitjans, Frequency dependent ionic conductivity in nanocrystalline CaF2 studied by impedance spectroscopy. Nanostruct. Mater.1995, 6, 885.10.1016/0965-9773(95)00201-4Search in Google Scholar

[39] W. Puin, S. Rodewald, R. Ramlau, P. Heitjans, J. Maier, Local and overall ionic conductivity in nanocrystalline CaF2. Solid State Ion.2000, 131, 159.10.1016/S0167-2738(00)00630-5Search in Google Scholar

[40] W. Puin, P. Heitjans, W. Dickenscheid, H. Gleiter. in Defects in Insulating Materials, (Eds. O. Kanert and J.-M. Spaeth) World Scientific, Singapore, p. 137, 1993.Search in Google Scholar

[41] P. Heitjans, A. Schirmer, S. Indris. in Diffusion in Condensed Matter – Methods, Materials, Models, (Eds. P. Heitjans and J. Kärger) Springer, Berlin, p. 367, 2005.10.1007/3-540-30970-5Search in Google Scholar

[42] J. Maier, Ionic conduction in space charge regions. Prog. Solid State Chem.1995, 23, 171.10.1016/0079-6786(95)00004-ESearch in Google Scholar

[43] N. Sata, K. Eberman, K. Eberl, J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature2000, 408, 946.10.1038/35050047Search in Google Scholar PubMed

[44] J. Maier, Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater.2005, 4, 805.10.1142/9789814317665_0023Search in Google Scholar

[45] J. Maier, Nanoionics: ionic charge carriers in small systems. Phys. Chem. Chem. Phys.2009, 11, 3011.10.1039/b902586nSearch in Google Scholar PubMed

[46] J. Maier, Pushing nanoionics to the limits: charge carrier chemistry in extremely small systems. Chem. Mater.2014, 26, 348.10.1021/cm4021657Search in Google Scholar

[47] D. R. Figueroa, A. V. Chadwick, J. H. Strange, NMR relaxation, ionic conductivity and self-diffusion process in barium fluoride. J. Phys. C Solid State1978, 11, 55.10.1088/0022-3719/11/1/017Search in Google Scholar

[48] A. Düvel, M. Wilkening, R. Uecker, S. Wegner, V. Šepelák, P. Heitjans, Mechanosynthesized nanocrystalline BaLiF3: the impact of grain boundaries and structural disorder on ionic transport. Phys. Chem. Chem. Phys.2010, 12, 11251.10.1039/c004530fSearch in Google Scholar PubMed

[49] S. Breuer, M. Wilkening: to be published 2016.Search in Google Scholar

[50] A. Kuhn, M. Kunze, P. Sreeraj, H. D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials. Solid State Nucl. Magn. Reson2012, 42, 2.10.1016/j.ssnmr.2012.02.001Search in Google Scholar PubMed

[51] A. Kuhn, S. Narayanan, L. Spencer, G. Goward, V. Thangadurai, M. Wilkening, Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy. Phys. Rev. B2011, 83, 094302.10.1103/PhysRevB.83.094302Search in Google Scholar

[52] D. Zahn, P. Heitjans, J. Maier, From composites to solid solutions: modeling of ionic conductivity in the CaF2-BaF2 system. Chem. Eur. J.2012, 18, 6225.10.1002/chem.201102410Search in Google Scholar PubMed

[53] A. V. Chadwick, A. Düvel, P. Heitjans, D. M. Pickup, S. Ramos, D. C. Sayle, T. X. T. Sayle, X-ray absorption spectroscopy and computer modelling study of nanocrystalline binary alkaline earth fluorides. Inst. Phys.: Conf. Series: Mat. Sci. Engin.2015, 80, Article no: 012005, 4 pages.10.1088/1757-899X/80/1/012005Search in Google Scholar

[54] A. Düvel, S. Wegner, K. Efimov, A. Feldhoff, P. Heitjans, M. Wilkening, Access to metastable complex ion conductors via mechanosynthesis: preparation, microstructure and conductivity of (Ba,Sr)LiF3 with inverse perovskite structure. J. Mater. Chem.2011, 21, 6238.10.1039/c0jm03439hSearch in Google Scholar

[55] L. N. Patro, K. Hariharan, Fast fluoride ion conducting materials in solid state ionics: an overview. Solid State Ion.2013, 239, 41.10.1016/j.ssi.2013.03.009Search in Google Scholar

[56] F. Gingl, BaMgF4 and Ba2Mg3F10: new examples for structural relationships between hydrides and fluorides. Z. Anorg. Allg. Chem.1997, 623, 705.10.1002/zaac.199762301112Search in Google Scholar

[57] C. V. Kannan, K. Shimamura, H. R. Zeng, H. Kimura, E. G. Villora, K. Kitamura, Ferroelectric and anisotropic electrical properties of BaMgF4 single crystal for vacuum UV devices. J. Appl. Phys.2008, 104, 114113.10.1063/1.3032739Search in Google Scholar

[58] D. L. Sidebottom, Dimensionality dependence of the conductivity dispersion in ionic materials. Phys. Rev. Lett.1999, 83, 983.10.1103/PhysRevLett.83.983Search in Google Scholar

[59] S. W. Kim, H. Y. Chang, P. S. Halasyamani, selective pure-phase synthesis of the multiferroic BaMF4 (M=Mg, Mn, Co, Ni, and Zn) family. J. Am. Chem. Soc.2010, 132, 17684.10.1021/ja108965sSearch in Google Scholar

[60] R. M. Kowalczyk, T. F. Kemp, D. Walker, K. J. Pike, P. A. Thomas, J. Kreisel, R. Dupree, M. E. Newton, J. V. Hanna, M. E. Smith, A variable temperature solid-state nuclear magnetic resonance, electron paramagnetic resonance and Raman scattering study of molecular dynamics in ferroelectric fluorides. J. Phys.: Condes. Matter.2011, 23, Article no: 315402, 16 pages.10.1088/0953-8984/23/31/315402Search in Google Scholar

[61] F. Preishuber-Pflügl, M. Wilkening: to be published 2016.Search in Google Scholar

[62] S. Chaudhuri, F. Wang, C. P. Grey, Resolving the different dynamics of the fluorine sublattices in the anionic conductor BaSnF4 by using high-resolution MAS NMR techniques. J. Am. Chem. Soc.2002, 124, 11746.10.1021/ja026155jSearch in Google Scholar

[63] G. Dénès, T. Birchall, M. Sayer, M. F. Bell, BaSnF4 – a new fluoride ionic conductor with the α-PbSnF4 structure. Solid State Ion.1984, 13, 213.10.1016/0167-2738(84)90032-8Search in Google Scholar

[64] G. Dénès, J. Hantash, A. Muntasar, P. Oldfield, A. Bartlett, Variations of BaSnF4 fast ion conductor with the method of preparation and temperature. Hyperfine Interact2007, 170, 145.10.1007/978-3-540-71127-8_16Search in Google Scholar

[65] L. N. Patro, K. Hariharan, Influence of synthesis methodology on the ionic transport properties of BaSnF4. Mater. Res. Bull.2011, 46, 732.10.1016/j.materresbull.2011.01.010Search in Google Scholar

[66] J.-M Réau, C. Lucat, J. Portier, P. Hagenmuller, L. Cot, S. Vilminot, Etude des proprietes structurales et electrioues d’un nouveau conducteur anionique: PbSnF4. Mater. Res. Bull.1978, 13, 877.10.1016/0025-5408(78)90097-1Search in Google Scholar

[67] A. V. Chadwick, E.-S. Hammam, D. van der Putten, J. H. Strange, Studies of ionic transport in MF2-SnF2 systems. Cryst. Latt. Def. Amorph. Mat.1987, 15, 303.Search in Google Scholar

[68] V. Šepelák, S. M. Becker, I. Bergmann, S. Indris, M. Scheuermann, A. Feldhoff, C. Kübel, M. Bruns, N. Stürzl, A. S. Ulrich, M. Ghafari, H. Hahn, C. P. Grey, K. D. Becker, P. Heitjans, Nonequilibrium structure of Zn2SnO4 spinel nanoparticles. J. Mater. Chem.2012, 22, 3117.10.1039/c2jm15427gSearch in Google Scholar

[69] V. Šepelák, M. Myndyk, M. Fabián, K. L. Da Silva, A. Feldhoff, D. Menzel, M. Ghafari, H. Hahn, P. Heitjans, K. D. Becker, Mechanosynthesis of nanocrystalline fayalite Fe2SiO4. Chem. Commun. (Camb)2012, 48, 11121.10.1039/c2cc36370dSearch in Google Scholar PubMed

[70] V. Šepelák, S. Begin-Colin, G. Le Caer, Transformations in oxides induced by high-energy ball-milling. Dalton. Trans.2012, 41, 11927.10.1039/c2dt30349cSearch in Google Scholar PubMed

[71] K. L. Da Silva, D. Menzel, A. Feldhoff, C. Kübel, M. Bruns, A. Paesano, A. Düvel, M. Wilkening, M. Ghafari, H. Hahn, F. J. Litterst, P. Heitjans, K. D. Becker, V. Šepelák, Mechanosynthesized BiFeO3 nanoparticles with highly reactive surface and enhanced magnetization. J. Phys. Chem. C2011, 115, 7209.10.1021/jp110128tSearch in Google Scholar

[72] V. Šepelák, M. Myndyk, R. Witte, J. Roder, D. Menzel, R. H. Schuster, H. Hahn, P. Heitjans, K. D. Becker, The mechanically induced structural disorder in barium hexaferrite BaFe12O19 and its impact on magnetism. Faraday Discuss. 2014, 170, 121.10.1039/C3FD00137GSearch in Google Scholar

[73] A. Düvel, E. Romanova, M. Sharifi, D. Freude, M. Wark, P. Heitjans, M. Wilkening, Mechanically induced phase transformation of γ-Al2O3 into α-Al2O3: access to structurally disordered γ-Al2O3 with a controllable amount of pentacoordinated Al sites. J. Phys. Chem. C2011, 115, 22770.10.1021/jp206077rSearch in Google Scholar

[74] V. Šepelák, I. Bergmann, S. Indris, A. Feldhoff, H. Hahn, K. D. Becker, C. P. Grey, P. Heitjans, High-resolution 27Al MAS NMR spectroscopic studies of the response of spinel aluminates to mechanical action. J. Mater. Chem.2011, 21, 8332.10.1039/c0jm03721dSearch in Google Scholar

[75] M. Fabián, P. Bottke, V. Girman, A. Düvel, K. L. Da Silva, M. Wilkening, H. Hahn, P. Heitjans, V. Šepelák, A simple and straightforward mechanochemical synthesis of the far-from-equilibrium zinc aluminate, ZnAl2O4, and its response to thermal treatment. RSC Adv.2015, 5, 54321.10.1039/C5RA09098ASearch in Google Scholar

[76] L. J. Berchmans, M. Myndyk, K. L. Da Silva, A. Feldhoff, J. Šubrt, P. Heitjans, K. D. Becker, V. Šepelák, A rapid one-step mechanosynthesis and characterization of nanocrystalline CaFe2O4 with orthorhombic structure. J. Alloys Compd.2010, 500, 68.10.1016/j.jallcom.2010.03.199Search in Google Scholar

[77] V. Šepelák, K. D. Becker, I. Bergmann, S. Suzuki, S. Indris, A. Feldhoff, P. Heitjans, C. P. Grey, A one-step mechanochemical route to core-shell Ca2SnO4 nanoparticles followed by 119Sn MAS NMR and 119Sn Mössbauer spectroscopy. Chem. Mater.2009, 21, 2518.10.1021/cm900590dSearch in Google Scholar

[78] J. H. Kwak, J. Z. Hu, D. Mei, C. W. Yi, D. H. Kim, C. H. F. Peden, L. F. Allard, J. Szanyi, Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of Platinum on γ-Al2O3. Science2009, 325, 1670.10.1126/science.1176745Search in Google Scholar PubMed

[79] D. H. Mei, J. H. Kwak, J. Z. Hu, S. J. Cho, J. Szanyi, L. F. Allard, C. H. F. Peden, Unique role of anchoring penta-coordinated Al3+ sites in the sintering of γ-Al2O3-Supported Pt catalysts. J. Phys. Chem. Lett.2010, 1, 2688.10.1021/jz101073pSearch in Google Scholar

[80] S. K. Lee, , S. Y. Park, Y. S. Yi, J. Moon. Structure and disorder in amorphous alumina thin films: Insights from high-resolution solid-state NMR. J. Phys. Chem. C2010, 114, 13890.10.1021/jp105306rSearch in Google Scholar

[81] A. Qiao, V. N. Kalevaru, J. Radnik, A. Düvel, P. Heitjans, A. S. H. Kumar, P. S. S. Prasad, N. Lingaiah, A. Martin, Oxidative dehydrogenation of ethane to ethylene over V2O5/Al2O3 catalysts: effect of source of alumina on the catalytic performance. Ind. Eng. Chem. Res.2014, 53, 18711.10.1021/ie5008344Search in Google Scholar

[82] J. H. Kwak, J. Z. Hu, D. H. Kim, J. Szanyi, C. H. F. Peden, Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. J. Catal.2007, 251, 189.10.1016/j.jcat.2007.06.029Search in Google Scholar

[83] J. H. Kwak, J. Z. Hu, A. Lukaski, D. H. Kim, J. Szanyi, C. H. F. Peden, Role of pentacoordinated Al3+ ions in the high temperature phase transformation of γ-Al2O3. J. Phys. Chem. C2008, 112, 9486.10.1021/jp802631uSearch in Google Scholar

Received: 2016-5-30
Accepted: 2016-8-16
Published Online: 2016-9-22
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2023 from https://www.degruyter.com/document/doi/10.1515/zkri-2016-1963/html
Scroll to top button