Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag September 17, 2016

The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms

Sergej Springer, Niclas Heidenreich, Norbert Stock, Leo van Wüllen, Klaus Huber, Stefano Leoni and Michael Wiebcke

Abstract

In this report, we summarize our theoretical and experimental investigations on the zeolitic imidazolate framework (ZIF) system [Zn(dcim)2] (dcim=4,5-dichloroimidazolate) that have been published recently. These comprise: (1) a theoretical study on hypothetical conformational [Zn(dcm)2]-SOD polymorphs with the same underlying sodalite (SOD) topology but distinct dcim linker orientations, (2) a synthetic work that resulted in the experimental realization of the most stable predicted (trigonal) SOD-type framework conformer and improved synthetic protocols for a previously discovered cubic SOD-type material, (3) a detailed structural analysis of the trigonal and cubic SOD-type materials, (4) a comparative characterization of the SOD-type materials by gas physisorption measurements, (5) a synthetic work that resulted in the discovery of a complete series of intermediate frameworks with the trigonal and cubic SOD-type materials as the end members, and (6) time-resolved in-situ light and stopped-flow synchrotron small-angle and wide-angle X-ray scattering experiments on the rapid crystallization of the RHO-type polymorph (ZIF-71). In addition, we report as yet unpublished work, concerning time-resolved in-situ angular-dispersive synchrotron X-ray diffraction experiments on RHO-/SOD-type phase selection via the coordination modulation approach during competitive formation of the RHO-type and SOD-type materials.

Acknowledgments

Provision of beamtime at beamline P07 by DESY and HZG is gratefully acknowledged. We thank Norbert Schell and Uta Rütt for support at the beamline during the in-situ experiments. Financial support by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the priority program 1415 (“Crystalline Non-Equilibrium Phases”) is gratefully acknowledged.

References

[1] C. A. Schröder, S. Saha, K. Huber, S. Leoni, M. Wiebcke, Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms. Z. Kristallogr.2014, 229, 807. Search in Google Scholar

[2] J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev.2012, 112, 1001. Search in Google Scholar

[3] A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res.2010, 43, 58. Search in Google Scholar

[4] J.-F. Yao, H.-T. Wang, Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem. Soc. Rev.2014, 43, 4470. Search in Google Scholar

[5] D. Farrusseng, S. Aguado, C. Pinel, Metal-organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed.2009, 48, 7502. Search in Google Scholar

[6] W. Cai, C.-C. Chu, G. Liu, Y.-X. Wáng, Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small2015, 11, 4806. Search in Google Scholar

[7] B.-L. Chen, Z.-X. Yang, Y.-Q. Zhu, Y. D. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem A2014, 2, 16811. Search in Google Scholar

[8] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs), Routes to various MOF topologies, morphologies, and composites. Chem. Soc. Rev.2012, 112, 933. Search in Google Scholar

[9] M. G. Goesten, F. Kapteijn, J. Gascon, Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal-organic frameworks. CrystEngComm2013, 15, 9249. Search in Google Scholar

[10] I. A. Baburin, S. Leoni, The energy landscape of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazole ring. J. Mater. Chem.2012, 22, 10152. Search in Google Scholar

[11] R. Galvelis, B. Slater, R. Chaudret, B. Creton, C. Nieto-Draghi, C. Mellot-Draznieks, Impact of functionalized linkers on the energy landscape of ZIFs. CrystEngComm2013, 15, 9603. Search in Google Scholar

[12] J. A. Gee, D. S. Sholl, Characterization of the thermodynamic stability of solvated metal-organic polymorphs using molecular simulations. J. Phys. Chem. C2013, 117, 20636. Search in Google Scholar

[13] L. Bouessel du Bourg, A. U. Ortiz, A. Boutin, F.-X. Coudert, Thermal and mechanical stability of zeolitic imidazolate framework polymorphs. APL Mater.2014, 2, 124110. Search in Google Scholar

[14] I. H. Lim, W. Schrader, F. Schüth: Insights into the molecular assembly of zeolitic imidazolate frameworks by ESI-MS. Chem. Mater.2015, 27, 3088. Search in Google Scholar

[15] J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater.2011, 23, 2130. Search in Google Scholar

[16] J. P. Patterson, P. Abellan, M. S. Denny Jr., C. Park, N. D. Browning, S. M. Cohen, J. E. Evans, N. C. Gianneschi, Observing the growth of metal-organic frameworks by in situ liguid cell transmission electron microscopy. J. Am. Chem. Soc.2015, 137, 7322. Search in Google Scholar

[17] J. Cravillon, C. A. Schröder, R. Nayuk, J. Gummel, K. Huber, M. Wiebcke, Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-Ray scattering. Angew. Chem. Int. Ed.2011, 50, 8067. Search in Google Scholar

[18] Z.-X. Low, J.-F. Yao, Q. Liu, M. He, Z.-Y. Wang, A. K. Suresh, J. Bellare, H.-T. Wang, Crystal transformation in a Zeolitic-Imidazolate framework. Cryst. Growth Des.2014, 14, 6589. Search in Google Scholar

[19] K. Self, M. Telfer, H. F. Greer, W. Z. Zhou, Revered crystal growth of RHO zeolitic imidazolate framework (ZIF). Chem.- Eur. J.2015, 21, 19090. Search in Google Scholar

[20] S. Springer, I. A. Baburin, T. Heinemeyer, J. G. Schiffmann, L. van Wüllen, S. Leoni, M. Wiebcke, A zeolitic imidazolate framework with conformational variety: conformational polymorphs versus frameworks with static conformational disorder. CrystEngComm2016, 18, 2477. Search in Google Scholar

[21] S. Saha, S. Springer, M. E. Schweinefuß, D. Pontoni, M. Wiebcke, K. Huber, Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ time-resolved light and X-ray scattering. Cryst. Growth Des.2016, 16, 2002. Search in Google Scholar

[22] M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, M. Wiebcke, Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. Dalton Trans.2014, 43, 3528. Search in Google Scholar

[23] R. Sabatini, T. Gorni, S. de Gironcoli, Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B: Condens. Matter2013, 87, 041108. Search in Google Scholar

[24] International Zeolite Association, Database of Zeolite structures. http://www.iza-structure.org/databases. Search in Google Scholar

[25] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science2008, 319, 939. Search in Google Scholar

[26] W. Depmeier, The sodalite family – a simple but versatile framework structure. Rev. Mineral. Geochem.2005, 57, 203. Search in Google Scholar

[27] X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed.2006, 45, 1557. Search in Google Scholar

[28] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Nat. Acad. Sci. USA2006, 103, 10186. Search in Google Scholar

[29] S. A. Moggach, T. D. Bennett, A. K. Cheetham, The effect of pressure on ZIF-8: Increasing pore size with pressure and the formation of a high-pressure Phase at 1.47 GPa. Angew. Chem. Int. Ed.2009, 48, 7087. Search in Google Scholar

[30] D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, T. Düren, Opening the gate: framework fexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc.2011, 133, 8900. Search in Google Scholar

[31] J.-P. Zhang, A.-X. Zhu, X.-M. Chen, Single-crystal X-ray diffraction and Raman spectroscopy studies of the isobaric N2 adsorption in SOD-type metal-organic zeolites. Chem. Commun.2012, 48, 11395. Search in Google Scholar

[32] X-C. Huang, J.-P. Zhang, X.-M. Chen, [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chin. Sci. Bull.2003, 48, 1531. Search in Google Scholar

[33] P. Zhao, G. I. Lampronti, G. O. Lloyd, M. T. Wharmby, S. Facq, A. K. Cheetham, S.Redfern, phase transitions in zeolitic imidazolate framework 7: the importance of framework flexibility and guest-induced instability. Chem. Mater.2014, 26, 1767. Search in Google Scholar

[34] Y. Du, B. Wooler, M. Nines, P. Kortunov, C. S. Pauer, J. Zengel, S. C. Weston, P. I. Ravikovitch, New high- and low-temperature phase changes of ZIF-7: elucidation and prediction of the thermodynamics of transitions. J. Am. Chem. Soc.2015, 137, 13603. Search in Google Scholar

[35] K. Knorr, C. M. Braunbarth, G. van der Goor, P. Behrens, C. Griewatsch, W. Depmeier, High-pressure study on dioxolane silica sodalite (C3H6O2)2[Si12O24] – neutron and X-ray powder diffraction experiments. Solid State Commun.2000, 503, 114. Search in Google Scholar

[36] R. S. P. King, S. E. Dann, M. R. J. Elsegood, P. F. Kelly, R. J. Mortimer, The synthesis, full characterisation and utilisation of template-free silica sodalite, a novel polymorph of silica. Chem.- Eur. J.2009, 15, 5441. Search in Google Scholar

[37] F.-X. Coudert, Responsive metal-organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater.2015, 27, 1905. Search in Google Scholar

[38] I. A. Baburin, S. Leoni, Modelling polymorphs of metal-organic frameworks: a systematic study of diamondoid zinc imidazolates. CrystEngComm2010, 12, 2809. Search in Google Scholar

[39] A.-X. Zhu, R.-B. Lin, X.-L. Qi, Y. Liu, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous Mesoporous Mater.2012, 157, 42. Search in Google Scholar

[40] D. S. Sholl, R. P. Lively, Defects in metal-organic frameworks: challenge or opportunity? J. Phys. Chem. Lett.2015, 6, 3437. Search in Google Scholar

[41] C. Zhang, C. Han, D. S. Sholl, J. R. Schmidt, Computational characterization of defects in metal-organic frameworks: spontaneous and water-induced point defects in ZIF-8. J. Phys. Chem. Lett.2016, 7, 459. Search in Google Scholar

[42] Z. Fang, B. Bueken, D. E. de Vos, R. A. Fischer, Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed.2015, 54, 7234. Search in Google Scholar

[43] S. Aguado, G. Bergeret, M. P. Titus, V. Moizan, C. Nieto-Draghi, N. Bats, D. Farrusseng, Guest-induced gate-opening of a zeolitic imidazolate framework. New J. Chem.2011, 35, 546. Search in Google Scholar

[44] M. T. Wharmby, S. Henke, T. D. Bennett, S. R. Bajpe, I. Schwedler, S. P. Thompson, F. Gozzo, P. Simoncic, C. Mellot-Draznieks, H. Tao, Y. Yue, A. K. Cheetha, Extreme flexibility in a zeolitic imidazolate framework: porous to dense phase transition in desolvated ZIF-4. Angew. Chem. Int. Ed.2015, 54, 6447. Search in Google Scholar

[45] N. Pienack, W. Bensch, In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed.2011, 50, 2014. Search in Google Scholar

[46] E. Antonova, B. Seidlhofer, J. Wang, M. Hinz, W. Bensch, Controlling Nucleation and crystal growth of a distinct polyoxovanadate cluster: an in situ energy dispersive X-ray diffraction study under solvothermal conditions. Chem. Eur. J.2012, 18, 15316. Search in Google Scholar

[47] H. H.-M. Yeung, Y. Wu, S. Henke, A. K. Cheetham, D. O’Hare, R. I. Walton, In situ observation of successive crystallizations and metastable intermediates in the formation of metal-organic frameworks. Angew. Chem. Int. Ed.2016, 55, 2012. Search in Google Scholar

[48] K. M. O. Jensen, C. Tyrsted, M. Bremholm, B. B. Iversen, In situ studies of solvothermal synthesis of energy materials. ChemSusChem2014, 7, 1594. Search in Google Scholar

[49] S. Springer, A. Satalov, J. Lippke, M. Wiebcke, Nanocrystals and nanomaterials of isoreticular zeolitic imidazoate frameworsk. Microporous Mesoporous Mater.2015, 216, 161. Search in Google Scholar

[50] J.-P. Zhang, Y.-Y. Lin, X.-C. Huang, X.-M. Chen, Supramolecular isomerism within three-dimensional 3-connected nets: unusual synthesis and characterization of trimorphic copper(I) 3,5-dimethyl-1,2,4-triazolate. Dalton Trans.2005, 3681. Search in Google Scholar

[51] X.-C. Huang, J.-P. Zhang, X.-M. Chen, One-dimensional supramolecular isomerism of copper(I) and silver(I) imidazolates based on the ligand orientation. Cryst. Growth Des.2006, 5, 1194. Search in Google Scholar

[52] J.-P. Zhang, X.-C. Huang, X.-M. Chen, Supramolecular isomerism in coordination polymers. Chem. Sov. Rev.2009, 38, 2385. Search in Google Scholar

[53] A. F. Gualtieri, Synthesis of sodium zeolites from natural halloysite. Phys. Chem. Miner.2001, 28, 719. Search in Google Scholar

[54] J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater.2009, 21, 1410. Search in Google Scholar

[55] S. R. Venna, J. B. Jasinski, M. A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc.2010, 132, 18030. Search in Google Scholar

[56] T. Hikov, C. A. Schröder, J. Cravillon, M. Wiebcke, K. Huber, In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Phys. Chem. Chem. Phys.2012, 14, 511. Search in Google Scholar

[57] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Häusermann, Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res.1996, 14, 235. Search in Google Scholar

Received: 2016-6-2
Accepted: 2016-8-15
Published Online: 2016-9-17
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston