Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 2, 2016

Type-I silicon clathrates containing lithium

Bodo Böhme, Matej Bobnar, Alim Ormeci, Sarah Peters, Walter Schnelle, Michael Baitinger and Yuri Grin


The intermetallic phase [LixBa8−x][LiySi46−y] is the first example of a clathrate-I silicide containing lithium with the peculiarity that the Li atoms occupy both cage and framework positions. The phase was obtained by ambient-pressure solid-state reactions at 400°C between Ba4Li2Si6 and the binary clathrate phase Ba8−xSi46 applying different experimental approaches. In this reaction, Li atoms substitute Si atoms of the framework at site 6c (space group Pmn) and fill up the Ba-deficient dodecahedral Si20 cages at site 2a. The presence of Li atoms in the clathrate phase was proven by combined X-ray powder diffraction, 7Li and 29Si solid-state NMR analyses. Incorporation of lithium markedly increased the lattice parameter of the clathrate phase, e.g. from a=10.3200(2) Å for Ba7.48(2)Si46 to a=10.3715(3) Å for [Li0.59(2)Ba7.41(2)][Li2.3(1)Si43.7(1)]. The critical temperature Tc for the transition to the superconducting state decreased from 7.7 K to 3.2 K upon Li incorporation.


We gratefully thank the Deutsche Forschungsgemeinschaft for generous support of our work within the priority program SPP1415. The articles [4, 10, 12–14, 21, 22, 28] have been published in peer-reviewed journals reporting on results of the project “In-situ Untersuchungen der Bildungsmechanismen von metastabilen Allotropen und Verbindungen der E13 und E14 Elemente durch Oxidation intermetallischer Phasen”. Concerning this article, we also thank Dr. A. Wosylus and Dr. U. Schwarz for preparation of Ba8−xSi46 by the high-pressure method and Dr. R. Cardoso, S. Hückmann, Dr. Y. Prots and Dr. H. Borrmann for recording X-ray diffraction patterns.


[1] A. Grüttner, R. Nesper, H. G. von Schnering, Angew. Chem. Int. Ed.1982, 21, 912.10.1002/anie.198209122Search in Google Scholar

[2] H. G. von Schnering, M. Schwarz, R. Nesper, J. Less-Comm. Met.1988, 137, 297.10.1016/0022-5088(88)90095-1Search in Google Scholar

[3] A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y.Grin, Nature2006, 443, 320.10.1038/nature05145Search in Google Scholar PubMed

[4] B. Böhme, S. Hoffmann, M. Baitinger, Y. Grin, Z. Naturforsch.2011, 66b, 230.10.1515/znb-2011-0304Search in Google Scholar

[5] F. Kiefer, A. J. Karttunen, M. Döblinger, T. F. Fässler, Chem. Mater.2011, 23, 4578.10.1021/cm201976xSearch in Google Scholar

[6] P. F. McMillan, J. Gryko, G. Bull, R. Arledge, A. J. Kenyon, B. A. Cressey, J. Solid State Chem.2005, 178, 937.10.1016/j.jssc.2004.12.040Search in Google Scholar

[7] D. Neiner, H. W. Chiu, S. M. Kauzlarich, J. Am. Chem. Soc.2006, 128, 11016.10.1021/ja064177qSearch in Google Scholar PubMed

[8] M. Zeilinger, L.-A. Jantke, L. M. Scherf, F. J. Kiefer, G. Neubüser, L. Kienle, A. J. Karttunen, S. Konar, U. Häussermann, T. F. Fässler, Chem. Mater.2014, 26, 6603.10.1021/cm503371eSearch in Google Scholar

[9] B. Böhme, A. Guloy, Z. Tang, W. Schnelle, U. Burkhardt, M. Baitinger, Y. Grin, J. Am. Chem. Soc.2007, 129, 5348.10.1021/ja0705691Search in Google Scholar PubMed

[10] Y. Liang, B. Böhme, M. Reibold, W. Schnelle, U. Schwarz, M. Baitinger, H. Lichte, Y. Grin, Inorg. Chem.2011, 50, 4523.10.1021/ic2001859Search in Google Scholar PubMed

[11] M. C. Blosser, G. S. Nolas, Mat. Lett.2013, 99, 161.10.1016/j.matlet.2013.03.020Search in Google Scholar

[12] B. Böhme, M. Reibold, G. Auffermann, H. Lichte, M. Baitinger, Y. Grin, Z. Kristallogr.2014, 229, 677.10.1515/zkri-2014-1764Search in Google Scholar

[13] Y. Liang, B. Böhme, L. Vasylechko, M. Baitinger, Y. Grin, J. Phys. Chem. Sol.2013, 74, 225.10.1016/j.jpcs.2012.09.010Search in Google Scholar

[14] P. Simon, Z. Tang, W. Carrillo-Cabrera, K. Chiong, B. Böhme, M. Baitinger, H. Lichte, Yu. Grin, A. M. Guloy, J. Am. Chem. Soc.2011, 133, 7596.10.1021/ja201728vSearch in Google Scholar PubMed

[15] A. M. Guloy, Z. Tang, R. Ramlau, B. Böhme,M. Baitinger, Y. Grin, Eur. J. Inorg. Chem.2009, 2455.10.1002/ejic.200801073Search in Google Scholar

[16] S. Yamanaka, E. Enishi, H. Fukuoka, M. Yasukawa, Inorg. Chem.2000, 39, 56.10.1021/ic990778pSearch in Google Scholar PubMed

[17] B. Sun, X. Jia, D. Huo, X. Guo, H. Sun, Y. Zhang, B. Liu, H. Ma, Mod. Phys. Lett. B2015, 29, 1550214.10.1142/S0217984915502140Search in Google Scholar

[18] B. Böhme, U. Aydemir, A. Ormeci, W. Schnelle, M. Baitinger, Y. Grin, Sci. Technol. Adv. Mat.2007, 8, 410.10.1016/j.stam.2007.06.006Search in Google Scholar

[19] T. Langer, S. Dupke, H. Trill, S. Passerini, H. Eckert, R. Pöttgen, M. Winter, J. Electrochem. Soc.2012, 159, A1318.10.1149/2.082208jesSearch in Google Scholar

[20] B. Böhme, C. B. Minella, F. Thoss, I. Lindemann, M. Rosenburg, C. Pistidda, K. T. Møller, T. R. Jensen, L. Giebeler, M. Baitinger, O. Gutfleisch, H. Ehrenberg, J. Eckert, Y. Grin, L. Schultz, Adv. Engin. Mat.2014, 16, 1189.10.1002/adem.201400182Search in Google Scholar

[21] Y. Liang, B. Böhme, A. Ormeci, H. Borrmann, O. Pecher, F. Haarmann, W. Schnelle, M. Baitinger, Yu. Grin, Chem. Eur. J.2012, 18, 9818.10.1002/chem.201202069Search in Google Scholar PubMed

[22] Y. Liang, W. Carrillo-Cabrera, A. Ormeci, B. Böhme, M. Baitinger, Yu. Grin, Z. Anorg. Allg. Chem.2015, 641, 339.10.1002/zaac.201400565Search in Google Scholar

[23] C. Cros, M. Pouchard, C. R. Chim.2009, 12, 1014–1056.10.1016/j.crci.2009.05.004Search in Google Scholar

[24] Y. Liang, W. Schnelle, I. Veremchuk, B. Böhme, M. Baitinger, Yu. Grin, J. Electron. Mat.2015, 44, 4444.10.1007/s11664-015-3960-9Search in Google Scholar

[25] H. G. von Schnering, U. Bolle, J. Curda, K. Peters, W. Carrillo-Cabrera, M. Somer, M. Schultheiss, U. Wedig, Angew. Chem. Int. Ed. Engl.1996, 35, 984.10.1002/anie.199609841Search in Google Scholar

[26] T. Goebel, Y. Prots, F. Haarmann, Z. Kristallogr. NCS2009, 224, 7.10.1524/ncrs.2009.224.14.7Search in Google Scholar

[27] U. Aydemir, A. Ormeci, H. Borrmann, B. Böhme, F. Zürcher, B. Uslu, T. Goebel, W. Schnelle, P. Simon, W. Carrillo-Cabrera, F. Haarmann, M. Baitinger, R. Nesper, H. G. von Schnering, Yu. Grin, Z. Anorg. Allg. Chem.2008, 634, 1651.10.1002/zaac.200800116Search in Google Scholar

[28] R. Castillo, W. Schnelle, M. Bobnar, U. Burkhardt, B. Böhme, M. Baitinger, U. Schwarz, Yu. Grin, Z. Anorg. Allg. Chem.2015, 641, 206.10.1002/zaac.201500001Search in Google Scholar

[29] WinCSD: L. Akselrud, Y. Grin, J. Appl. Cryst.2014, 47, 803.10.1107/S1600576714001058Search in Google Scholar

[30] Jana2006: V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

[31] K. Koepernik, H. Eschrig, Phys. Rev. B1999, 59, 1743.10.1103/PhysRevB.59.1743Search in Google Scholar

[32] J. P. Perdew, Y. Wang, Phys. Rev. B1992, 45, 13244.10.1103/PhysRevB.45.13244Search in Google Scholar

[33] H. Fukuoka, J. Kiyoto, S. Yamanaka, Inorg. Chem.2003, 42, 2933.10.1021/ic020676qSearch in Google Scholar

[34] B. Böhme, Yu. Grin, unpublished results.Search in Google Scholar

[35] B. Böhme, Neue Präparationswege für intermetallische Verbindungen, doctoral thesis, TU Dresden, published in Logos Berlin 2010.Search in Google Scholar

[36] E. B. Brackett, T. E. Brackett, R. L. Sass, J. Phys. Chem.1963, 67, 2132.10.1021/j100804a038Search in Google Scholar

[37] S. Yamanaka, Dalton Trans.2010, 39, 1901.10.1039/B918480ESearch in Google Scholar

[38] M. Bobnar, B. Böhme, M. Wedel, U. Burkhardt, A. Ormeci, Y. Prots, C. Drathen, Y. Liang, H. D. Nguyen, M. Baitinger, Y. Grin, Dalton Trans.2015, 44, 12680.10.1039/C5DT01198ASearch in Google Scholar

[39] H. P. Grosse, E. Tillmanns, Cryst. Struct. Commun.1974, 3, 599.Search in Google Scholar

[40] H. Sakamoto, H. Tou, H. Ishii, Y. Maniwa, E. A. Reny, S. Yamanaka, Physica C2000,341–348, 2135.10.1016/S0921-4534(00)01054-6Search in Google Scholar

[41] Y. Maniwa, H. Sakamoto, H. Tou, Y. Aoki, H. Sato, F. Shimizu, H. Kawaji, S. Yamanaka, Mol. Cryst. Liq. Cryst.2000, 341, 497.10.1080/10587250008026188Search in Google Scholar

[42] H. Zhang, H. Borrmann, N. Oeschler, C. Candolfi, W. Schnelle, M. Schmidt, U. Burkhardt, M. Baitinger, J.-T. Zhao, Yu. Grin, Inorg. Chem.2011, 50, 1250.10.1021/ic1016559Search in Google Scholar PubMed

[43] B. Liu, M. Saisho, Y. Nagatomo, T. Oka, T. Osada, H. Miura, O. Furukimi, S. Munetoh, Appl. Mech. Mater.2013, 310, 59.10.4028/ in Google Scholar

[44] N. Kamakura, T. Nakano, Y. Ikemoto, M. Usuda, H. Fukuoka, S. Yamanaka, S. Shin, K. Kobayashi, Phys. Rev. B2005, 72, 014511.10.1103/PhysRevB.72.014511Search in Google Scholar

[45] P. Warrier, C. A. Koh, Appl. Phys. Rev.2016, 3, 040805.10.1063/1.4958711Search in Google Scholar

[46] Y. Li, R. Raghavan, N. A. Wagner, S. K. Davidowski, L. Baggetto, R. Zhao, Q. Cheng, J. L. Yarger, G. M. Veith, C. Ellis-Terrell, M. A. Miller, K. S. Chan, C. K. Chan, Adv. Sci.2015, 2, 1500057.10.1002/advs.201500057Search in Google Scholar PubMed PubMed Central

[47] N. A. Wagner, R. Raghavan, R. Zhao, Q. Wei, X. Peng, C. K. Chan, ChemElectroChem2014, 1, 347.10.1002/celc.201300104Search in Google Scholar

[48] J. Yang, J. S. Tse, J. Mater. Chem. A2013, 1, 7782–7789.10.1039/c3ta11050hSearch in Google Scholar

[49] X. Peng, Q. Wei, Y. Li, C. K. Chan, J. Phys. Chem. C2015, 119, 28247.10.1021/acs.jpcc.5b07523Search in Google Scholar

[50] T. F. T. Cerqueira, S. Pailhès, R. Debord, V. M. Giordano, R. Viennois, J. Shi, S. Botti, M. A. L. Marques, Chem. Mater.2016, 28, 3711.10.1021/acs.chemmater.6b00392Search in Google Scholar

[51] D. Li, S.-K. Deng, H.-R. Wang, Y.-F. Zhao, X.-F. Zi, Y. Tu, L. Fang, W.-H. Wei, Eur. Phys. J. Appl. Phys.2013, 64, 30101.10.1051/epjap/2013130254Search in Google Scholar

Received: 2016-6-23
Accepted: 2016-10-1
Published Online: 2016-11-2
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow