Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 11, 2017

A new solid solution compound with the Sr21Mn4Sb18 structure type: Sr13Eu8Cd3Mn1Sb18

  • Elizabeth L. Kunz Wille , Joya A. Cooley , James C. Fettinger , Nasrin Kazem and Susan M. Kauzlarich EMAIL logo


The title compound with the nominal formula, Sr13Eu8Cd3Mn1Sb18, was synthesized by Sn-flux. Structure refinement was based on single-crystal X-ray diffractometer data. Employing the exact composition, the formula is Sr13.23Eu7.77Cd3.12Mn0.88Sb18 for the solid solution Sr21-xEuxCd4-yMnySb18. This phase adopts the Sr21Mn4Sb18 type structure with site preferences for both Eu and Cd. The structure crystallizes in the monoclinic system in space group C2/m and Z=4: a=18.1522(11), b=17.3096(10), c=17.7691(10) Å, β=91.9638(8)°, 6632 F2 values, 216 variables, R1=0.0254 and wR2=0.0563. Site selectivity of the elements in this new compound will be discussed in relationship with the Sr21Mn4Sb18 type structure and other related structure types. Temperature dependent magnetic susceptibility data reveal Curie–Weiss paramagnetism with an experimental moment of 19.3 μB/f.u. and a Weiss constant of 0.4 K. Magnetic ordering is seen at low temperatures, with a transition temperature of 3.5 K.


We thank Peter Klavins for assistance in obtaining the magnetization data, Nicholas Botto for microprobe analysis, Navtej Grewal for useful discussion, and NSF DMR – 1405973 for funding.


[1] S. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater.2006, 18, 1873.10.1021/cm060261tSearch in Google Scholar

[2] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. Nat. Mater.2008, 7, 105.10.1038/nmat2090Search in Google Scholar PubMed

[3] S. M. Kauzlarich, S. R. Brown, G. Jeffrey Snyder, Zintl phases for thermoelectric devices. Dalton Trans2007, 2099.10.1039/b702266bSearch in Google Scholar PubMed

[4] Shi, X., L. Chen, C. Uher, Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev.2016, 61, 379.10.1080/09506608.2016.1183075Search in Google Scholar

[5] N. Kazem, S. M. Kauzlarich, Chapter 288 – Thermoelectric properties of Zintl Antimonides. in Handbook on the Physics and Chemistry of Rare Earths, (Eds. G. B. Jean-Claude and K.P. Vitalij) Elsevier, North Holland, p. 177, 2016.10.1016/bs.hpcre.2016.05.003Search in Google Scholar

[6] H. Kim, C. L. Condron, A. P. Holm, S. M. Kauzlarich, Synthesis, structure, and magnetic properties of a new ternary Zintl phase: Sr21Mn4Sb18. J. Am. Chem. Soc.2000, 122, 10720.10.1021/ja002709bSearch in Google Scholar

[7] A. P. Holm, M. M. Olmstead, S. M. Kauzlarich, The crystal structure and magnetic properties of a new ferrimagnetic semiconductor: Ca21Mn4Sb18. Inorg. Chem.2003, 42, 1973.10.1021/ic020530rSearch in Google Scholar PubMed

[8] S.-Q. Xia, S. Bobev, Diverse polyanions based on MnBi4 and MnSb4 tetrahedra: polymorphism, structure, and bonding in Ca21Mn4Bi18 and Ca21Mn4Sb18. Inorg. Chem.2007, 46, 874.10.1021/ic061958jSearch in Google Scholar PubMed

[9] S.-Q. Xia, S. Bobev, Zintl phase variations through cation selection. Synthesis and structure of A21Cd4Pn18 (A=Eu, Sr, Ba; Pn=Sb, Bi). Inorg. Chem.2008, 47, 1919.10.1021/ic800242aSearch in Google Scholar PubMed

[10] N.-T. Suen, Y. Wang, S. Bobev, Synthesis, crystal structures, and physical properties of the new Zintl phases A21Zn4Pn18 (A=Ca, Eu; Pn=As, Sb) – Versatile arrangements of [ZnPn4] tetrahedra. J. Solid State Chem.2015, 227, 204.10.1016/j.jssc.2015.03.031Search in Google Scholar

[11] Y. Wang, G. M. Darone, S. Bobev, The new Zintl phases Eu21Cd4Sb18 and Eu21Mn4Sb18. J. Solid State Chem.2016, 238, 303.10.1016/j.jssc.2016.03.044Search in Google Scholar

[12] B. Saparov, S. Bobev, A. Ozbay, E. R. Nowak, Synthesis, structure and physical properties of the new Zintl phases Eu11Zn6Sb12 and Eu11Cd6Sb12. J. Solid State Chem.2008, 181, 2690.10.1016/j.jssc.2008.06.054Search in Google Scholar

[13] N. Kazem, A. Hurtado, F. Sui, S. Ohno, A. Zevalkink, G. J. Snyder, S. M. Kauzlarich, High temperature thermoelectric properties of the solid-solution Zintl phase Eu11Cd6–xZnxSb12. Chem. Mater.2015, 27, 4413.10.1021/acs.chemmater.5b01301Search in Google Scholar

[14] N. Kazem, W. Xie, S. Ohno, A. Zevalkink, G. J. Miller, G. J. Snyder, S. M. Kauzlarich, High-temperature thermoelectric properties of the solid-solution Zintl phase Eu11Cd6Sb12–xAsx (x<3). Chem. Mater.2014, 26, 1393.10.1021/cm403345aSearch in Google Scholar

[15] P. C. Canfield, Z. Fisk, Growth of single crystals from metallic fluxes. Phil. Mag. B1992, 65, 1117.10.1080/13642819208215073Search in Google Scholar

[16] R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A1976, 32, 751.10.1107/S0567739476001551Search in Google Scholar

Received: 2016-12-7
Accepted: 2017-2-8
Published Online: 2017-3-11
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.3.2024 from
Scroll to top button