Abstract
Besides the previously known α-form (monoclinic, P21/c, Z=4) of bis(2,6-dimesitylphenyl)ditelluride, two new polymorphic modifications, namely the β-form (monoclinic, P21/c, Z=8) and the γ-form (triclinic, P1̅, Z=2), were obtained serendipitously during chemical reactions. In all three modifications, the individual molecules possess significantly different conformations and bond parameters, such as Te–Te bond lengths, C–Te–Te bond angles, C–Te–Te–C torsion angles and intramolecular Menshutkin interactions, which is also reflected in their non-covalent interactions with adjacent molecules in the crystal lattice via London dispersion and electrostatic forces. The interplay between intermolecular and intramolecular forces in these conformational polymorphs was investigated using quantum chemical calculations, which reveal that the β-form should be thermodynamically stable at absolute zero. In contrast, crystallization experiments and thermoanalytical investigations indicate that the α-form is stable at high temperatures and therefore, both forms might be related by enantiotropism.
Acknowledgment
The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support (Emmy Noether program GR 4451/1-1). We thank Bartolomeo Civalleri (University of Turin) and Gabriele Saleh (Trinity College Dublin) for their help with Crystal14 and NCIMilano. Simon Grabowsky is indebted to Peter Luger for his generous support and mentoring. All of us salute him for his outstanding career in science pioneering modern crystallography.
References
[1] D. Barga, F. Grepioni, L. Maini, Chem. Commun. 2010, 46, 6232.10.1039/c0cc01195aSearch in Google Scholar PubMed
[2] P. Hobza, K. Müller-Dethlefs, Non-Covalent Interactions: Theory and Experiment, Royal Society of Chemistry, Cambridge, UK, 2010.Search in Google Scholar
[3] K. Müller-Dethlefs, P. Hobza, Chem. Rev. 2000, 100, 143.10.1021/cr9900331Search in Google Scholar PubMed
[4] J. D. Dunitz, IUCrJ2015, 2, 157.10.1107/S2052252515002006Search in Google Scholar PubMed PubMed Central
[5] J. D. Dunitz, A. Gavezzotti, Angew. Chem. Int. Ed. 2005, 44, 1766.10.1002/anie.200460157Search in Google Scholar PubMed
[6] C. Lecomte, E. Espinosa, C. F. Matta, IUCrJ2015, 2, 161.10.1107/S2052252515002067Search in Google Scholar PubMed PubMed Central
[7] T. S. Thakur, R. Dubey, G. R. Desiraju, IUCrJ2015, 2, 159.10.1107/S205225251500189XSearch in Google Scholar PubMed PubMed Central
[8] A. Gavezzotti, New J. Chem. 2016, 40, 6848.10.1039/C6NJ01087CSearch in Google Scholar
[9] C. F. Matta, J. Hernández-Trujillo, T. H. Tang, R. F. W. Bader, Chem. Eur. J. 2003, 9, 1940.10.1002/chem.200204626Search in Google Scholar PubMed
[10] J. Poater, M. Solà, F. M. Bickelhaupt, Chem. Eur. J.2006, 12, 2889.10.1002/chem.200500850Search in Google Scholar PubMed
[11] J. Echeverría, G. Aullón, D. Danovich, S. Shaik, S. Alvarez, Nature Chem. 2011, 3, 323.10.1038/nchem.1004Search in Google Scholar PubMed
[12] S. Rösel, H. Quanz, C. Logemann, J. Becker, E. Mossou, L. Cañadillas-Delgado, E. Caldeweyher, S. Grimme, P. R. Schreiner, J. Am. Chem. Soc. 2017, 139, 7428.10.1021/jacs.7b01879Search in Google Scholar PubMed
[13] D. J. Liptrot, P. P. Power, Nat. Rev. Chem. 2017, 1, 0004.10.1038/s41570-016-0004Search in Google Scholar
[14] J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274.10.1002/anie.201503476Search in Google Scholar PubMed
[15] J.-D. Guo, D. J. Liptrot, S. Nagase, P. P. Power, Chem. Sci. 2015, 6, 6235.10.1039/C5SC02707ASearch in Google Scholar PubMed PubMed Central
[16] J. P. Wagner, P. R. Schreiner, J. Chem. Theory Comput. 2016, 12, 231.10.1021/acs.jctc.5b01100Search in Google Scholar PubMed
[17] R. Pal, S. Mebs, M. W. Shi, D. Jayatilaka, J. M. Krzeszczakowska, L. A. Malaspina, M. Wiecko, P. Luger, M. Hesse, Y.-S. Chen, J. Beckmann, S. Grabowsky, Inorg. Chem. 2018, 122, 3665.Search in Google Scholar
[18] J. Bernstein, A. T. Hagler, J. Am. Chem. Soc. 1978, 100, 673.10.1021/ja00471a001Search in Google Scholar
[19] A. Nangia, Acc. Chem. Res. 2008, 5, 595.10.1021/ar700203kSearch in Google Scholar PubMed
[20] D. Barga, F. Grepioni, Chem. Soc. Rev. 2000, 29, 229.10.1039/a909042hSearch in Google Scholar
[21] J. Bernstein, Polymorphism in Molecular Crystals, Oxford University Press, Oxford, UK, 2002.Search in Google Scholar
[22] J. Bernstein, Cryst. Growth. Des. 2011, 11, 632.10.1021/cg1013335Search in Google Scholar
[23] A. J. Cruz-Cabeza, J. Bernstein, Chem. Rev. 2014, 114, 2170.10.1021/cr400249dSearch in Google Scholar PubMed
[24] A. I. Kitaigorodskii, Adv. Struct. Res. Diffr. Methods1970, 3, 173.10.1016/B978-0-08-017543-0.50006-7Search in Google Scholar
[25] A. I. Kitaigorodsky, Molecular Crystals and Molecules, Academic Press, New York, London, 1973.Search in Google Scholar
[26] J. J. McKinnon, A. S. Mitchell, M. A. Spackman, Chem. Eur. J. 1998, 4, 2136.10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-GSearch in Google Scholar
[27] M. A. Spackman, Phys. Scr. 2013, 87, 048103.10.1088/0031-8949/87/04/048103Search in Google Scholar
[28] M. A. Spackman, D. Jayatilaka, CrystEngComm2009, 11, 19.10.1039/B818330ASearch in Google Scholar
[29] J. J. McKinnon, F. P. A. Fabbiani, M. A. Spackman, Cryst. Growth Des. 2007, 7, 755.10.1021/cg060773kSearch in Google Scholar
[30] L. Mazur, A. E. Koziol, K. N. Jarzembska, R. Paprocka, B. Modzelewska-Banachiewicz, Cryst. Growth Des. 2017, 17, 2104.10.1021/acs.cgd.7b00080Search in Google Scholar
[31] H. Schmidbaur, A. Schnier, Organometallics2008, 27, 2361.10.1021/om701044eSearch in Google Scholar
[32] J. Zukerman-Schpector, I. Haiduc, CrystEngComm.2002, 4, 178.10.1039/B201969HSearch in Google Scholar
[33] E. R. T. Tiekink, J. Zukerman-Schpector, CrystEngComm2009, 11, 2701.10.1039/b910209dSearch in Google Scholar
[34] R. Lo, P. Švec, Z. Růžičková, A. Růžička, R. Hobza, Chem. Commun. 2016, 52, 3500.10.1039/C5CC10363KSearch in Google Scholar
[35] J. Beckmann, M. Hesse, H. Poleschner, K. Seppelt, Angew. Chem. Int. Ed. 2007, 46, 8277.10.1002/anie.200702341Search in Google Scholar PubMed
[36] J. Beckmann, P. Finke, S. Heitz, M. Hesse, Eur. J. Inorg. Chem. 2008, 1921.10.1002/ejic.200800038Search in Google Scholar
[37] J. Beckmann, P. Finke, M. Hesse, B. Wettig, Angew. Chem. Int. Ed. 2008, 47, 9982.10.1002/anie.200803997Search in Google Scholar PubMed
[38] J. Beckmann, J. Bolsinger, P. Finke, M. Hesse, Angew. Chem. Int. Ed. 2010, 49, 8030.10.1002/anie.201002545Search in Google Scholar PubMed
[39] O. Mallow, M. A. Khanfar, M. Malischewski, P. Finke, M. Hesse, E. Lork, T. Augenstein, F. Breher, J. R. Harmer, N. V. Vasilieva, A. Zibarev, A. S. Bogomyakov, K. Seppelt, J. Beckmann, Chem. Sci. 2015, 6, 497.10.1039/C4SC02964JSearch in Google Scholar PubMed PubMed Central
[40] J. Beckmann, J. Bolsinger, S. Mebs, Main Group Met. Chem. 2013, 36, 57 and references cited.10.1515/mgmc-2013-0020Search in Google Scholar
[41] D. J. Sandman, L. Li, S. Tripathy, J. C. Stark, L. A. Acampora, B. M. Foxman, Organometallics1994, 13, 348.10.1021/om00013a051Search in Google Scholar
[42] F. H. Kruse, R. E. Marsh, J.D. McCullough, Acta Crystallogr.1957, 10, 201.10.1107/S0365110X5700064XSearch in Google Scholar
[43] G. Van den Bossche, M. R. Spirlet, O. Dideberg, L. Dupont, Acta Crystallogr.1984, C40, 1011.Search in Google Scholar
[44] G. Llabres, M. Baiwir, J. L. Piette, J. Appl. Crystallogr.1974, 7, 299.10.1107/S0021889874009605Search in Google Scholar
[45] M. R. Spiret, G. van den Bossche, O. Dideberg, L. Dupont, Acta Crystallogr.1979, B35, 1727.10.1107/S0567740879007585Search in Google Scholar
[46] M. J. Turner, J. J. McKinnon, D. Jayatilaka, M. A. Spackman, CrystEngComm2011, 13, 1804.10.1039/C0CE00683ASearch in Google Scholar
[47] J. D. Dunitz, J. Bernstein, Acc. Chem. Res. 1995, 28, 193.10.1021/ar00052a005Search in Google Scholar
[48] D.-K. Bučar, R. W. Lancaster, J. Bernstein, Angew. Chem. Int. Ed. 2015, 54, 6972.10.1002/anie.201410356Search in Google Scholar PubMed PubMed Central
[49] T. Threlfall, Org. Proc. Res. Dev. 2003, 7, 1017.10.1021/op030026lSearch in Google Scholar
[50] A. L. Fuller, A. S. Scott-Hayward, Y. Li, M. Bühl, A. M. Z. Slawin, J. D. Woollins, J. Am. Chem. Soc. 2010, 132, 5799.10.1021/ja100247ySearch in Google Scholar PubMed
[51] W.-W. du Mont, L. Lange, H. H. Karsch, K. Peters, E. M. Peters, H. G. von Schnering, Chem. Ber. 1988, 121, 11.10.1002/cber.19881210103Search in Google Scholar
[52] S. Salehzadeh, M. Saberinasab, Mol. Phys. 2016, 114, 3669.10.1080/00268976.2016.1255802Search in Google Scholar
[53] R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Cambridge University Press, Oxford, UK, 1991.Search in Google Scholar
[54] E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garciá, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.10.1021/ja100936wSearch in Google Scholar PubMed PubMed Central
[55] J. Contreras-Garciá, R. A. Boto, F. Izquierdo-Ruiz, I. Reva, T. Woller, M. Alonso, Theor. Chem. Acc. 2016, 135, 242.10.1007/s00214-016-1977-7Search in Google Scholar
[56] M. Kohout, Int. J. Quantum Chem.2004, 97, 651.10.1002/qua.10768Search in Google Scholar
[57] M. Kohout, F. R. Wagner, Y. Grin, Theor. Chem. Acc. 2008, 119, 413.10.1007/s00214-007-0396-1Search in Google Scholar
[58] A. Klamt, G. J. Schüürmann, J. Chem. Soc. Perkin Trans 2, 1993, 799.10.1039/P29930000799Search in Google Scholar
[59] M. J. Turner, S. Grabowsky, D. Jayatilaka, M. A. Spackman, J. Phys. Chem. Lett. 2014, 5, 4249.10.1021/jz502271cSearch in Google Scholar
[60] C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ2017, 4, 575.10.1107/S205225251700848XSearch in Google Scholar
[61] S. P. Thomas, P. R. Spackman, D. Jayatilaka, M. A. Spackman, J. Chem. Theory Comput.2018, 14, 1614.10.1021/acs.jctc.7b01200Search in Google Scholar
[62] S. P. Thomas, M. A. Spackman, Aust. J. Chem.2018, 71, 279.10.1071/CH17620Search in Google Scholar
[63] M. A. Spackman, P. G. Byrom, Chem. Phys. Lett. 1997, 267, 215.10.1016/S0009-2614(97)00100-0Search in Google Scholar
[64] J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2007, 3814.10.1039/b704980cSearch in Google Scholar PubMed
[65] The energies calculated to investigate the thermodynamics of the systems in this paper refer to zero Kelvin. At zero Kelvin, entropy can be neglected for the free energy according to ΔG=ΔH–TΔS. However, to get some insight into the entropy based on the experimental geometries, we have estimated the entropies using a method by A. Ø. Madsen, S. Larsen, Angew. Chem. Int. Ed.2007, 46, 8609, that was applied successfully, e.g. in: R. Pal, M. B. M. Reddy, B. Dinesh, P. Balaram, T. N. Guru Row, J. Phys. Chem. A2014, 118, 9568. Normal-mode frequencies were estimated using a TLS analysis inside the program thma11 at the temperature of the diffraction experiment (173 K). For every normal-mode frequency value, an entropy is calculated upon projection to room temperature, and then summed up over all modes for a total entropy estimate of the crystal. Here, the β-form has the lowest entropy (167.55 J mol−1 K−1), but very similar to the γ-form (167.81 J mol−1 K−1), whereas the α-form has a significantly higher entropy (173.12 J mol−1 K−1).10.1002/anie.200702423Search in Google Scholar PubMed
[66] N. Walker, D. Stuart, Acta Crystallogr.1983, A39, 158.10.1107/S0108767383000252Search in Google Scholar
[67] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr.2009, 42, 339.10.1107/S0021889808042726Search in Google Scholar
[68] K. Brandenburg, H. Putz, H. DIAMOND V3.1d, Crystal Impact GbR, 2006.Search in Google Scholar
[69] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.Search in Google Scholar
[70] O. Mallow, J. Bolsinger, P. Finke, M. Hesse, Y.-S. Chen, A. Duthie, S. Grabowsky, P. Luger, S. Mebs, J. Beckmann, J. Am. Chem. Soc. 2014, 136, 10870.10.1021/ja505648xSearch in Google Scholar
[71] D. Feller, J. Comp. Chem. 1996, 17, 1571.10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-PSearch in Google Scholar
[72] S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem.2011, 32, 1456.10.1002/jcc.21759Search in Google Scholar
[73] T. A. Keith, AIMAll (Version 15.05.18), TK Gristmill Software, Overland Park KS, USA, 2015 (http://aim.tkgristmill.com).Search in Google Scholar
[74] G. Saleh, L. Lo Presti, C. Gatti, D. Ceresoli, J. Appl. Crystallogr. 2013, 46, 1513.10.1107/S0021889813020098Search in Google Scholar
[75] C. B. Hübschle, P. Luger, J. Appl. Crystallogr.2006, 39, 901.10.1107/S0021889806041859Search in Google Scholar
[76] M. Kohout, DGrid, version 4.6. Radebeul, Germany, 2011.Search in Google Scholar
[77] R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, B. Kirtman, Int. J. Quantum Chem.2014, 114, 1287.10.1002/qua.24658Search in Google Scholar
[78] C. Bartolomeo, C. M. Zicovich-Wilson, L. Valenzano, P. Ugliengo, CrystEngComm2008, 10, 405.10.1039/B715018KSearch in Google Scholar
[79] J. Heyd, J. E. Peralta, G. E. Scuseria, R. L. Martin, J. Chem. Phys. 2005, 123, 174101.10.1063/1.2085170Search in Google Scholar
[80] F. H. Allen, I. J. Bruno, Acta Crystallogr. B2010, 66, 380.10.1107/S0108768110012048Search in Google Scholar
[81] S. F. Boys, F. Bernardi, Mol. Phys.1970, 19, 553.10.1080/00268977000101561Search in Google Scholar
[82] D. Jayatilaka, D. J. Grimwood, Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography, Springer, New York, 2003.10.1007/3-540-44864-0_15Search in Google Scholar
[83] M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17, University of Western Australia, 2017. http://hirshfeldsurface.net.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2077).
©2018 Walter de Gruyter GmbH, Berlin/Boston