Accessible Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag March 12, 2019

Understanding the effect of host flexibility on the adsorption of CH4, CO2 and SF6 in porous organic cages

Siyuan Yang, Linjiang Chen, Daniel Holden, Ruiyao Wang, Yuanyuan Cheng, Mona Wells, Andrew I. Cooper and Lifeng Ding

Abstract

Molecular simulations for gas adsorption in microporous materials with flexible host structures is challenging and, hence, relatively rare. To date, most gas adsorption simulations have been carried out using the grand-canonical Monte Carlo (GCMC) method, which fundamentally does not allow the structural flexibility of the host to be accounted for. As a result, GCMC simulations preclude investigation into the effect of host flexibility on gas adsorption. On the other hand, approaches such as molecular dynamics (MD) that simulate the dynamic evolution of a system almost always require a fixed number of particles in the simulation box. Here we use a hybrid GCMC/MD scheme to include host flexibility in gas adsorption simulations. We study the adsorption of three gases – CH4, CO2 and SF6 – in the crystal of a porous organic cage (POC) molecule, CC3-R, whose structural flexibility is known by experiment to play an important role in adsorption of large guest molecules [L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M. A. Little, A. Kewley, M. E. Briggs, A. Stephenson, K. Mark Thomas, J. A. Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D. M. Strachan, P. K. Thallapally, A. I. Cooper, Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater.2014, 13, 954, D. Holden, S. Y. Chong, L. Chen, K. E. Jelfs, T. Hasell, A. I. Cooper, Understanding static, dynamic and cooperative porosity in molecular materials. Chem. Sci.2016, 7, 4875]. The results suggest that hybrid GCMC/MD simulations can reproduce experimental adsorption results, without the need to adjust the host–guest interactions in an ad hoc way. Negligible errors in adsorption capacity and isosteric heat are observed with the rigid-host assumption for small gas molecules such as CH4 and CO2 in CC3-R, but the adsorption capacity of the larger SF6 molecule in CC3-R is hugely underestimated if flexibility is ignored. By contrast, hybrid GCMC/MD adsorption simulations of SF6 in CC3-R can accurately reproduce experiment. This work also provides a molecular level understanding of the cooperative adsorption mechanism of SF6 in the CC3-R molecular crystal.

Funding source: Chinese Young Scholar National Science Foundation

Award Identifier / Grant number: 21403171

Funding source: Xi’an JiaoTong-Liverpool University (XJTLU) Research Development Fund

Award Identifier / Grant number: PGRS-13-03-08

Funding statement: The authors acknowledge financial support from the Chinese Young Scholar National Science Foundation Grant (21403171), the Xi’an JiaoTong-Liverpool University (XJTLU) Research Development Fund (PGRS-13-03-08), and the Key Program Special Fund in XJTLU (KSF-E-03). The authors acknowledge utilization of the computational resources from the Shenzhen Cloud Computing Center. The work was also supported by the Engineering and Physical Sciences Research Council (EPSRC) (EP/N004884/1) and the Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design.

References

[1] L. J. Barbour, Crystal porosity and the burden of proof. Chem. Commun.2006, 1163.Search in Google Scholar

[2] A. K. Cheetham, G. Férey, T. Loiseau, Open-framework inorganic materials. Angew. Chem. Int. Ed.1999, 38, 3268.Search in Google Scholar

[3] S. Kitagawa, R. Kitaura, S. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed.2004, 43, 2334.Search in Google Scholar

[4] O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature2003, 423, 705.Search in Google Scholar

[5] A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Porous, crystalline, covalent organic frameworks. Science2005, 310, 1166.Search in Google Scholar

[6] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA.2006, 103, 10186.Search in Google Scholar

[7] T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem.2009, 121, 9621.Search in Google Scholar

[8] M. Mastalerz, Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed.2010, 49, 5042.Search in Google Scholar

[9] J. R. Holst, A. Trewin, A. I. Cooper, Porous organic molecules. Nat. Chem.2010, 2, 915.Search in Google Scholar

[10] J. Tian, P. K. Thallapally, B. P. McGrail, Porous organic molecular materials. CrystEngComm.2012, 14, 1909.Search in Google Scholar

[11] T. Hasell, S. Y. Chong, M. Schmidtmann, D. J. Adams, A. I. Cooper, Porous organic alloys. Angew. Chem. Int. Ed.2012, 51, 7154.Search in Google Scholar

[12] N. B. McKeown, Nanoporous molecular crystals. J. Mater. Chem.2010, 20, 10588.Search in Google Scholar

[13] S. J. Dalgarno, P. K. Thallapally, L. J. Barbour, J. L. Atwood, Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem. Soc. Rev.2007, 36, 236.Search in Google Scholar

[14] T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner, A. I. Cooper, Porous organic cages. Nat. Mater.2009, 8, 973.Search in Google Scholar

[15] J. T. A. Jones, D. Holden, T. Mitra, T. Hasell, D. J. Adams, K. E. Jelfs, A. Trewin, D. J. Willock, G. M. Day, J. Bacsa, A. Steiner, A. I. Cooper, On-off porosity switching in a molecular organic solid. Angew. Chem. Int. Ed.2011, 50, 749.Search in Google Scholar

[16] A. Kewley, A. Stephenson, L. Chen, M. E. Briggs, T. Hasell, A. I. Cooper, Porous organic cages for gas chromatography separations. Chem. Mater.2015, 27, 3207.Search in Google Scholar

[17] T. Mitra, X. Wu, R. Clowes, J. T. A. Jones, K. E. Jelfs, D. J. Adams, A. Trewin, J. Bacsa, A. Steiner, A. I. Cooper, A soft porous organic cage crystal with complex gas sorption behavior. Chem. A Eur. J.2011, 17, 10235.Search in Google Scholar

[18] D. Holden, S. Y. Chong, L. Chen, K. E. Jelfs, T. Hasell, A. I. Cooper, Understanding static, dynamic and cooperative porosity in molecular materials. Chem. Sci.2016, 7, 4875.Search in Google Scholar

[19] R. Krishna, J. M. van Baten, In silico screening of metal-organic frameworks in separation applications. Phys. Chem. Chem. Phys.2011, 13, 10593.Search in Google Scholar

[20] D. Holden, K. E. Jelfs, A. Trewin, D. J. Willock, M. Haranczyk, A. I. Cooper, Gas diffusion in a porous organic cage: analysis of dynamic pore connectivity using molecular dynamics simulations. J. Phys. Chem. C2014, 118, 12734.Search in Google Scholar

[21] R. Babarao, S. Dai, D. E. Jiang, Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study. Langmuir2011, 27, 3451.Search in Google Scholar

[22] B. Smit, R. Krishna, Monte Carlo simulations in zeolites. Curr. Opin. Solid State Mater. Sci.2001, 5, 455.Search in Google Scholar

[23] T. Düren, Y.-S. Bae, R. Q. Snurr, Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem. Soc. Rev.2009, 38, 1237.Search in Google Scholar

[24] R. Krishna, Diffusion in porous crystalline materials. Chem. Soc. Rev.2012, 41, 3099.Search in Google Scholar

[25] L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M. A. Little, A. Kewley, M. E. Briggs, A. Stephenson, K. Mark Thomas, J. A. Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D. M. Strachan, P. K. Thallapally, A. I. Cooper, Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater.2014, 13, 954.Search in Google Scholar

[26] A. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little, S. Y. Chong, B. J. Slater, D. P. McMahon, B. Bonillo, C. J. Stackhouse, A. Stephenson, C. M. Kane, R. Clowes, T. Hasell, A. I. Cooper, G. M. Day, Functional materials discovery using energy-structure-function maps. Nature2017, 543, 657.Search in Google Scholar

[27] Y. Liu, J.-H. Her, A. Dailly, A. J. Ramirez-Cuesta, D. A. Neumann, C. M. Brown, Reversible structural transition in MIL-53 with large temperature hysteresis. J. Am. Chem. Soc.2008, 130, 11813.Search in Google Scholar

[28] J. T. A. Jones, D. Holden, T. Mitra, T. Hasell, D. J. Adams, K. E. Jelfs, A. Trewin, D. J. Willock, G. M. Day, J. Bacsa, A. Steiner, A. I. Cooper, On-off porosity switching in a molecular organic solid. Angew. Chem. Int. Ed.2011, 50, 749.Search in Google Scholar

[29] G. D. Andreetti, R. Ungaro, A. Pochini, Crystal and molecular structure of cyclo{quater[(5-t-butyl-2-hydroxy-1,3- pheny1ene)methylenel) toluene (1 : 1) clathrate. J. Chem. Soc. Chem. Commun.1979, 1005.Search in Google Scholar

[30] D. Holden, K. E. Jelfs, A. I. Cooper, A. Trewin, D. J. Willock, Bespoke force field for simulating the molecular dynamics of porous organic cages. J. Phys. Chem. C2012, 116, 16639.Search in Google Scholar

[31] F. Salles, S. Bourrelly, H. Jobic, T. Devic, V. Guillerm, P. Llewellyn, C. Serre, G. Ferey, G. Maurin, Molecular insight into the adsorption and diffusion of water in the versatile hydrophilic/hydrophobic flexible MIL-53(Cr) MOF. J. Phys. Chem. C2011, 115, 10764.Search in Google Scholar

[32] T. Chokbunpiam, R. Chanajaree, O. Saengsawang, S. Reimann, C. Chmelik, S. Fritzsche, J. Caro, T. Remsungnen, S. Hannongbua, The importance of lattice flexibility for the migration of ethane in ZIF-8: molecular dynamics simulations. Microporous Mesoporous Mater.2013, 174, 126.Search in Google Scholar

[33] T. J. H. Vlugt, M. Schenk, Influence of framework flexibility on the adsorption properties of hydrocarbons in the zeolite silicalite. J. Phys. Chem. B2002, 106, 12757.Search in Google Scholar

[34] J. A. Gee, D. S. Sholl, Effect of framework flexibility on C8 aromatic adsorption at high loadings in metal-organic frameworks. J. Phys. Chem. C2016, 120, 370.Search in Google Scholar

[35] W. Wu, P. Zhi-Sen Li, B. Liu, P. Liu, Z.-P. Xia, Y.-Y. Wang, Double-step CO sorption and guest-induced single-crystal-to-single-crystal transformation in a flexible porous framework. Dalton Trans.2015, 44, 10141.Search in Google Scholar

[36] P. J. Meza-Morales, D. A. Gómez-Gualdrón, R. R. Arrieta-Perez, A. J. Hernández-Maldonado, R. Q. Snurr, M. C. Curet-Arana, CO2 adsorption-induced structural changes in coordination polymer ligands elucidated via molecular simulations and experiments. Dalton Trans.2016, 45, 17168.Search in Google Scholar

[37] Y. X. Shi, W. X. Li, W. H. Zhang, J. P. Lang, Guest-induced switchable breathing behavior in a flexible metal-organic framework with pronounced negative gas pressure. Inorg. Chem.2018, 57, 8627.Search in Google Scholar

[38] Y. Sheng, Q. Chen, J. Yao, Y. Lu, H. Liu, S. Dai, Guest-induced breathing effect in a flexible molecular crystal. Angew. Chem. Int. Ed.2016, 55, 3378.Search in Google Scholar

[39] V. I. Nikolayenko, D. C. Castell, D. P. van Heerden, L. J. Barbour, Guest-induced structural transformations in a porous halogen-bonded framework. Angew. Chem. Int. Ed.2018, 57, 12086.Search in Google Scholar

[40] T. Hasell, S. Y. Chong, K. E. Jelfs, D. J. Adams, A. I. Cooper, Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc.2012, 134, 588.Search in Google Scholar

[41] T. Hasell, M. Miklitz, A. Stephenson, M. A. Little, S. Y. Chong, R. Clowes, L. Chen, D. Holden, G. A. Tribello, K. E. Jelfs, A. I. Cooper, Porous organic cages for sulfur hexafluoride separation. J. Am. Chem. Soc.2016, 138, 1653.Search in Google Scholar

[42] D. Dubbeldam, S. Calero, D. E. Ellis, R. Q. Snurr, RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul.2015, 7022, 1.Search in Google Scholar

[43] W. R. Gilks, N. G. Best, K. K. C. Tan, Adaptive rejection metropolis sampling within gibbs sampling. Appl. Stat.1995, 44, 455.Search in Google Scholar

[44] S. L. Mayo, B. D. Olafson, W. A. G. Iii, E. Eb, E. A. E. T. El, Dreiding: a generic force field for molecular simulations. J. Phys. Chem.1990, 101, 8897.Search in Google Scholar

[45] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Development and testing of the OLPS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc.1996, 118, 11225.Search in Google Scholar

[46] M. D. Simulations, UFF, a full periodic table force field for molecular Mechanics and molecular dynamics simulations. J. Am. Chem. Soc.1992, 114, 10024.Search in Google Scholar

[47] H. Sun, Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules1995, 28, 701.Search in Google Scholar

[48] M. G. Martin, J. I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B1998, 102, 2569.Search in Google Scholar

[49] D. Dellis, J. Samios, Molecular force field investigation for Sulfur Hexafluoride: a computer simulation study. Fluid Phase Equilib.2010, 291, 81.Search in Google Scholar

[50] J. Baker, An algorithm for the location of transition states. J. Comput. Chem.1986, 7, 385.Search in Google Scholar

[51] L. D. Gelb, K. E. Gubbins, Pore size distributions in porous glasses: a computer simulation study. Langmuir1999, 15, 305.Search in Google Scholar

[52] A. García-Sánchez, D. Dubbeldam, S. Calero, Modeling adsorption and self-diffusion of methane in LTA zeolites: the influence of framework flexibility. J. Phys. Chem. C2010, 114, 15068.Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2150).

Received: 2018-11-25
Accepted: 2019-02-06
Published Online: 2019-03-12
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston