Abstract
Molecular simulations for gas adsorption in microporous materials with flexible host structures is challenging and, hence, relatively rare. To date, most gas adsorption simulations have been carried out using the grand-canonical Monte Carlo (GCMC) method, which fundamentally does not allow the structural flexibility of the host to be accounted for. As a result, GCMC simulations preclude investigation into the effect of host flexibility on gas adsorption. On the other hand, approaches such as molecular dynamics (MD) that simulate the dynamic evolution of a system almost always require a fixed number of particles in the simulation box. Here we use a hybrid GCMC/MD scheme to include host flexibility in gas adsorption simulations. We study the adsorption of three gases – CH4, CO2 and SF6 – in the crystal of a porous organic cage (POC) molecule, CC3-R, whose structural flexibility is known by experiment to play an important role in adsorption of large guest molecules [L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M. A. Little, A. Kewley, M. E. Briggs, A. Stephenson, K. Mark Thomas, J. A. Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D. M. Strachan, P. K. Thallapally, A. I. Cooper, Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater.2014, 13, 954, D. Holden, S. Y. Chong, L. Chen, K. E. Jelfs, T. Hasell, A. I. Cooper, Understanding static, dynamic and cooperative porosity in molecular materials. Chem. Sci.2016, 7, 4875]. The results suggest that hybrid GCMC/MD simulations can reproduce experimental adsorption results, without the need to adjust the host–guest interactions in an ad hoc way. Negligible errors in adsorption capacity and isosteric heat are observed with the rigid-host assumption for small gas molecules such as CH4 and CO2 in CC3-R, but the adsorption capacity of the larger SF6 molecule in CC3-R is hugely underestimated if flexibility is ignored. By contrast, hybrid GCMC/MD adsorption simulations of SF6 in CC3-R can accurately reproduce experiment. This work also provides a molecular level understanding of the cooperative adsorption mechanism of SF6 in the CC3-R molecular crystal.
Funding source: Chinese Young Scholar National Science Foundation
Award Identifier / Grant number: 21403171
Award Identifier / Grant number: PGRS-13-03-08
Funding statement: The authors acknowledge financial support from the Chinese Young Scholar National Science Foundation Grant (21403171), the Xi’an JiaoTong-Liverpool University (XJTLU) Research Development Fund (PGRS-13-03-08), and the Key Program Special Fund in XJTLU (KSF-E-03). The authors acknowledge utilization of the computational resources from the Shenzhen Cloud Computing Center. The work was also supported by the Engineering and Physical Sciences Research Council (EPSRC) (EP/N004884/1) and the Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design.
References
[1] L. J. Barbour, Crystal porosity and the burden of proof. Chem. Commun.2006, 1163.10.1039/b515612mSearch in Google Scholar
[2] A. K. Cheetham, G. Férey, T. Loiseau, Open-framework inorganic materials. Angew. Chem. Int. Ed.1999, 38, 3268.10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-USearch in Google Scholar
[3] S. Kitagawa, R. Kitaura, S. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed.2004, 43, 2334.10.1002/anie.200300610Search in Google Scholar
[4] O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature2003, 423, 705.10.1038/nature01650Search in Google Scholar
[5] A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Porous, crystalline, covalent organic frameworks. Science2005, 310, 1166.10.1126/science.1120411Search in Google Scholar
[6] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA.2006, 103, 10186.10.1073/pnas.0602439103Search in Google Scholar
[7] T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem.2009, 121, 9621.10.1002/ange.200904637Search in Google Scholar
[8] M. Mastalerz, Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed.2010, 49, 5042.10.1002/anie.201000443Search in Google Scholar
[9] J. R. Holst, A. Trewin, A. I. Cooper, Porous organic molecules. Nat. Chem.2010, 2, 915.10.1038/nchem.873Search in Google Scholar
[10] J. Tian, P. K. Thallapally, B. P. McGrail, Porous organic molecular materials. CrystEngComm.2012, 14, 1909.10.1039/c2ce06457jSearch in Google Scholar
[11] T. Hasell, S. Y. Chong, M. Schmidtmann, D. J. Adams, A. I. Cooper, Porous organic alloys. Angew. Chem. Int. Ed.2012, 51, 7154.10.1002/anie.201202849Search in Google Scholar PubMed
[12] N. B. McKeown, Nanoporous molecular crystals. J. Mater. Chem.2010, 20, 10588.10.1039/c0jm01867hSearch in Google Scholar
[13] S. J. Dalgarno, P. K. Thallapally, L. J. Barbour, J. L. Atwood, Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem. Soc. Rev.2007, 36, 236.10.1039/b606047cSearch in Google Scholar PubMed
[14] T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner, A. I. Cooper, Porous organic cages. Nat. Mater.2009, 8, 973.10.1038/nmat2545Search in Google Scholar PubMed
[15] J. T. A. Jones, D. Holden, T. Mitra, T. Hasell, D. J. Adams, K. E. Jelfs, A. Trewin, D. J. Willock, G. M. Day, J. Bacsa, A. Steiner, A. I. Cooper, On-off porosity switching in a molecular organic solid. Angew. Chem. Int. Ed.2011, 50, 749.10.1002/anie.201006030Search in Google Scholar PubMed
[16] A. Kewley, A. Stephenson, L. Chen, M. E. Briggs, T. Hasell, A. I. Cooper, Porous organic cages for gas chromatography separations. Chem. Mater.2015, 27, 3207.10.1021/acs.chemmater.5b01112Search in Google Scholar
[17] T. Mitra, X. Wu, R. Clowes, J. T. A. Jones, K. E. Jelfs, D. J. Adams, A. Trewin, J. Bacsa, A. Steiner, A. I. Cooper, A soft porous organic cage crystal with complex gas sorption behavior. Chem. A Eur. J.2011, 17, 10235.10.1002/chem.201101631Search in Google Scholar PubMed
[18] D. Holden, S. Y. Chong, L. Chen, K. E. Jelfs, T. Hasell, A. I. Cooper, Understanding static, dynamic and cooperative porosity in molecular materials. Chem. Sci.2016, 7, 4875.10.1039/C6SC00713ASearch in Google Scholar PubMed PubMed Central
[19] R. Krishna, J. M. van Baten, In silico screening of metal-organic frameworks in separation applications. Phys. Chem. Chem. Phys.2011, 13, 10593.10.1039/c1cp20282kSearch in Google Scholar PubMed
[20] D. Holden, K. E. Jelfs, A. Trewin, D. J. Willock, M. Haranczyk, A. I. Cooper, Gas diffusion in a porous organic cage: analysis of dynamic pore connectivity using molecular dynamics simulations. J. Phys. Chem. C2014, 118, 12734.10.1021/jp500293sSearch in Google Scholar
[21] R. Babarao, S. Dai, D. E. Jiang, Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study. Langmuir2011, 27, 3451.10.1021/la104827pSearch in Google Scholar PubMed
[22] B. Smit, R. Krishna, Monte Carlo simulations in zeolites. Curr. Opin. Solid State Mater. Sci.2001, 5, 455.10.1016/S1359-0286(01)00027-4Search in Google Scholar
[23] T. Düren, Y.-S. Bae, R. Q. Snurr, Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem. Soc. Rev.2009, 38, 1237.10.1039/b803498mSearch in Google Scholar PubMed
[24] R. Krishna, Diffusion in porous crystalline materials. Chem. Soc. Rev.2012, 41, 3099.10.1039/c2cs15284cSearch in Google Scholar PubMed
[25] L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M. A. Little, A. Kewley, M. E. Briggs, A. Stephenson, K. Mark Thomas, J. A. Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D. M. Strachan, P. K. Thallapally, A. I. Cooper, Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater.2014, 13, 954.10.1038/nmat4035Search in Google Scholar PubMed
[26] A. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little, S. Y. Chong, B. J. Slater, D. P. McMahon, B. Bonillo, C. J. Stackhouse, A. Stephenson, C. M. Kane, R. Clowes, T. Hasell, A. I. Cooper, G. M. Day, Functional materials discovery using energy-structure-function maps. Nature2017, 543, 657.10.1038/nature21419Search in Google Scholar PubMed PubMed Central
[27] Y. Liu, J.-H. Her, A. Dailly, A. J. Ramirez-Cuesta, D. A. Neumann, C. M. Brown, Reversible structural transition in MIL-53 with large temperature hysteresis. J. Am. Chem. Soc.2008, 130, 11813.10.1021/ja803669wSearch in Google Scholar PubMed
[28] J. T. A. Jones, D. Holden, T. Mitra, T. Hasell, D. J. Adams, K. E. Jelfs, A. Trewin, D. J. Willock, G. M. Day, J. Bacsa, A. Steiner, A. I. Cooper, On-off porosity switching in a molecular organic solid. Angew. Chem. Int. Ed.2011, 50, 749.10.1002/anie.201006030Search in Google Scholar PubMed
[29] G. D. Andreetti, R. Ungaro, A. Pochini, Crystal and molecular structure of cyclo{quater[(5-t-butyl-2-hydroxy-1,3- pheny1ene)methylenel) toluene (1 : 1) clathrate. J. Chem. Soc. Chem. Commun.1979, 1005.10.1039/c39790001005Search in Google Scholar
[30] D. Holden, K. E. Jelfs, A. I. Cooper, A. Trewin, D. J. Willock, Bespoke force field for simulating the molecular dynamics of porous organic cages. J. Phys. Chem. C2012, 116, 16639.10.1021/jp305129wSearch in Google Scholar
[31] F. Salles, S. Bourrelly, H. Jobic, T. Devic, V. Guillerm, P. Llewellyn, C. Serre, G. Ferey, G. Maurin, Molecular insight into the adsorption and diffusion of water in the versatile hydrophilic/hydrophobic flexible MIL-53(Cr) MOF. J. Phys. Chem. C2011, 115, 10764.10.1021/jp202147mSearch in Google Scholar
[32] T. Chokbunpiam, R. Chanajaree, O. Saengsawang, S. Reimann, C. Chmelik, S. Fritzsche, J. Caro, T. Remsungnen, S. Hannongbua, The importance of lattice flexibility for the migration of ethane in ZIF-8: molecular dynamics simulations. Microporous Mesoporous Mater.2013, 174, 126.10.1016/j.micromeso.2012.12.047Search in Google Scholar
[33] T. J. H. Vlugt, M. Schenk, Influence of framework flexibility on the adsorption properties of hydrocarbons in the zeolite silicalite. J. Phys. Chem. B2002, 106, 12757.10.1021/jp0263931Search in Google Scholar
[34] J. A. Gee, D. S. Sholl, Effect of framework flexibility on C8 aromatic adsorption at high loadings in metal-organic frameworks. J. Phys. Chem. C2016, 120, 370.10.1021/acs.jpcc.5b10260Search in Google Scholar
[35] W. Wu, P. Zhi-Sen Li, B. Liu, P. Liu, Z.-P. Xia, Y.-Y. Wang, Double-step CO sorption and guest-induced single-crystal-to-single-crystal transformation in a flexible porous framework. Dalton Trans.2015, 44, 10141.10.1039/C5DT00460HSearch in Google Scholar
[36] P. J. Meza-Morales, D. A. Gómez-Gualdrón, R. R. Arrieta-Perez, A. J. Hernández-Maldonado, R. Q. Snurr, M. C. Curet-Arana, CO2 adsorption-induced structural changes in coordination polymer ligands elucidated via molecular simulations and experiments. Dalton Trans.2016, 45, 17168.10.1039/C6DT02994ASearch in Google Scholar PubMed
[37] Y. X. Shi, W. X. Li, W. H. Zhang, J. P. Lang, Guest-induced switchable breathing behavior in a flexible metal-organic framework with pronounced negative gas pressure. Inorg. Chem.2018, 57, 8627.10.1021/acs.inorgchem.8b01408Search in Google Scholar PubMed
[38] Y. Sheng, Q. Chen, J. Yao, Y. Lu, H. Liu, S. Dai, Guest-induced breathing effect in a flexible molecular crystal. Angew. Chem. Int. Ed.2016, 55, 3378.10.1002/anie.201510637Search in Google Scholar PubMed
[39] V. I. Nikolayenko, D. C. Castell, D. P. van Heerden, L. J. Barbour, Guest-induced structural transformations in a porous halogen-bonded framework. Angew. Chem. Int. Ed.2018, 57, 12086.10.1002/anie.201806399Search in Google Scholar PubMed
[40] T. Hasell, S. Y. Chong, K. E. Jelfs, D. J. Adams, A. I. Cooper, Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc.2012, 134, 588.10.1021/ja209156vSearch in Google Scholar PubMed
[41] T. Hasell, M. Miklitz, A. Stephenson, M. A. Little, S. Y. Chong, R. Clowes, L. Chen, D. Holden, G. A. Tribello, K. E. Jelfs, A. I. Cooper, Porous organic cages for sulfur hexafluoride separation. J. Am. Chem. Soc.2016, 138, 1653.10.1021/jacs.5b11797Search in Google Scholar PubMed PubMed Central
[42] D. Dubbeldam, S. Calero, D. E. Ellis, R. Q. Snurr, RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul.2015, 7022, 1.10.1080/08927022.2015.1010082Search in Google Scholar
[43] W. R. Gilks, N. G. Best, K. K. C. Tan, Adaptive rejection metropolis sampling within gibbs sampling. Appl. Stat.1995, 44, 455.10.2307/2986138Search in Google Scholar
[44] S. L. Mayo, B. D. Olafson, W. A. G. Iii, E. Eb, E. A. E. T. El, Dreiding: a generic force field for molecular simulations. J. Phys. Chem.1990, 101, 8897.10.1021/j100389a010Search in Google Scholar
[45] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Development and testing of the OLPS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc.1996, 118, 11225.10.1021/ja9621760Search in Google Scholar
[46] M. D. Simulations, UFF, a full periodic table force field for molecular Mechanics and molecular dynamics simulations. J. Am. Chem. Soc.1992, 114, 10024.10.1021/ja00051a040Search in Google Scholar
[47] H. Sun, Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules1995, 28, 701.10.1021/ma00107a006Search in Google Scholar
[48] M. G. Martin, J. I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B1998, 102, 2569.10.1021/jp972543+Search in Google Scholar
[49] D. Dellis, J. Samios, Molecular force field investigation for Sulfur Hexafluoride: a computer simulation study. Fluid Phase Equilib.2010, 291, 81.10.1016/j.fluid.2009.12.018Search in Google Scholar
[50] J. Baker, An algorithm for the location of transition states. J. Comput. Chem.1986, 7, 385.10.1002/jcc.540070402Search in Google Scholar
[51] L. D. Gelb, K. E. Gubbins, Pore size distributions in porous glasses: a computer simulation study. Langmuir1999, 15, 305.10.1021/la9808418Search in Google Scholar
[52] A. García-Sánchez, D. Dubbeldam, S. Calero, Modeling adsorption and self-diffusion of methane in LTA zeolites: the influence of framework flexibility. J. Phys. Chem. C2010, 114, 15068.10.1021/jp1059215Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2150).
©2019 Walter de Gruyter GmbH, Berlin/Boston