Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 20, 2019

Water in zeolite L and its MOF mimic

  • Ettore Fois EMAIL logo and Gloria Tabacchi EMAIL logo

Abstract

Confinement of molecules in one dimensional arrays of channel-shaped cavities has led to technologically interesting materials. However, the interactions governing the supramolecular aggregates still remain obscure, even for the most common guest molecule: water. Herein, we use computational chemistry methods (#compchem) to study the water organization inside two different channel-type environments: zeolite L – a widely used matrix for inclusion of dye molecules, and ZLMOF – the closest metal-organic-framework mimic of zeolite L. In ZLMOF, the methyl groups of the ligands protrude inside the channels, creating nearly isolated nanocavities. These cavities host well-separated ring-shaped clusters of water molecules, dominated mainly by water-water hydrogen bonds. ZLMOF provides arrays of “isolated supramolecule” environments, which might be exploited for the individual confinement of small species with interesting optical or catalytic properties. In contrast, the one dimensional channels of zeolite L contain a continuous supramolecular structure, governed by the water interactions with potassium cations and by water-water hydrogen bonds. Water imparts a significant energetic stabilization to both materials, which increases with the water content in ZLMOF and follows the opposite trend in zeolite L. The water network in zeolite L contains an intriguing hypercoordinated structure, where a water molecule is surrounded by five strong hydrogen bonds. Such a structure, here described for the first time in zeolites, can be considered as a water pre-dissociation complex and might explain the experimentally detected high proton activity in zeolite L nanochannels.

Acknowledgements

This work was supported by the Italian MIUR, within the frame of the following projects: PRIN2015 “ZAPPING” High-pressure nano-confinement in Zeolites: the Mineral Science know-how APPlied to engineerING of innovative materials for technological and environmental applications (2015HK93L7), ImPACT (FIRB RBFR12CLQD), and University of Insubria Far 2016–2017. We gratefully thank the Editors of this Special Issue–Robert Bell and Michael Fischer–for inviting us to contribute to the Issue, and two anonymous reviewers for their insightful comments and suggestions.

References

[1] G. Tabacchi, Supramolecular organization in confined nanospaces. ChemPhysChem.2018, 19, 1249.10.1002/cphc.201701090Search in Google Scholar PubMed

[2] A. Corma, H. Garcia, Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur. J. Inorg. Chem.2004, 2004, 1143.10.1002/ejic.200300831Search in Google Scholar

[3] N. Alarcos, B. Cohen, M. Ziółek, A. Douhal, Photochemistry and photophysics in silica-based materials: ultrafast and single molecule spectroscopy observation. Chem. Rev.2017, 117, 13639.10.1021/acs.chemrev.7b00422Search in Google Scholar PubMed

[4] P. Xing, C. Yang, Y. Wang, S. Z. F. Phua, Y. Zhao, Solvent- controlled assembly of aromatic glutamic dendrimers for efficient luminescent color conversion. Adv. Funct. Mater.2018, 28, 1802859.10.1002/adfm.201802859Search in Google Scholar

[5] G. Calzaferri, S. Huber, H. Maas, C. Minkowski, Host-guest antenna materials. Angew. Chem. Int. Ed.2003, 42, 3732.10.1002/anie.200300570Search in Google Scholar PubMed

[6] S. Hashimoto, K. Samata, T. Shoji, N. Taira, T. Tomita, S. Matsuo, Preparation of large-scale 2D zeolite crystal array structures to achieve optical functionality. Microporous Mesoporous Mater.2009, 117, 220.10.1016/j.micromeso.2008.06.028Search in Google Scholar

[7] H. Garcia, V. I. Parvulescu, Heterogeneous catalysis based on the supramolecular association. Catal. Sci. Technol.2018, 8, 4834.10.1039/C8CY01295DSearch in Google Scholar

[8] M. Zendehdel, M. A. Bodaghifard, H. Behyar, Z. Mortezaei, Alkylaminopyridine-grafted on HY Zeolite: preparation, characterization and application in synthesis of 4 H-Chromenes. Microporous Mesoporous Mater.2018, 266, 83.10.1016/j.micromeso.2018.02.052Search in Google Scholar

[9] G. Calzaferri, Nanochannels: hosts for the supramolecular organization of molecules and complexes. Langmuir2012, 28, 6216.10.1021/la3000872Search in Google Scholar PubMed

[10] H. S. Kim, K. B. Yoon, Preparation and characterization of CdS and PbS quantum dots in zeolite Y and their applications for nonlinear optical materials and solar cell. Coord. Chem. Rev.2014, 263, 239.10.1016/j.ccr.2013.12.001Search in Google Scholar

[11] G. A. Ozin, A. Kuperman, A. Stein, Advanced Zeolite, Materials Science. Angew. Chem. Int. Ed. Eng.1989, 28, 359.10.1002/anie.198903591Search in Google Scholar

[12] R. Seifert, A. Kunzmann, G. Calzaferri, The yellow color of silver-containing zeolite A. Angew. Chem. Int. Ed.1998, 37, 1521.10.1002/(SICI)1521-3773(19980619)37:11<1521::AID-ANIE1521>3.0.CO;2-VSearch in Google Scholar

[13] A. Baldansuren, E. Roduner, EPR experiments of Ag species supported on NaA. Chem. Phys. Lett.2009, 473, 135.10.1016/j.cplett.2009.03.060Search in Google Scholar

[14] N. H. Heo, Y. Kim, J. J. Kim, K. Seff, Surprising intrazeolitic chemistry of silver. J. Phys. Chem. C2016, 120, 5277.10.1021/acs.jpcc.5b11490Search in Google Scholar

[15] S. Ramachandra, Z. D. Popovicâ, K. C. Schuermann, F. Cucinotta, G. Calzaferri, L. De Cola, Förster resonance energy transfer in quantum dot-dye-loaded zeolite L nanoassemblies. Small2011, 7, 1488.10.1002/smll.201100010Search in Google Scholar

[16] D. J. Moon, W. T. Lim, K. Seff, Structures of the subnanometer clusters of cadmium sulfide encapsulated in zeolite Y: Cd4S6+ and Cd(SHCd)46++. J. Phys. Chem. C2016, 120, 16722.10.1021/acs.jpcc.6b04369Search in Google Scholar

[17] H. Li, P. Li, Luminescent materials of lanthanoid complexes hosted in zeolites. Chem. Commun.2018, 54, 13884.10.1039/C8CC07440BSearch in Google Scholar

[18] P. Woodtli, S. Giger, P. Müller, L. Sägesser, N. Zucchetto, M. J. Reber, A. Ecker, D. Brühwiler, Indigo in the nanochannels of zeolite L: towards a new type of colorant. Dye. Pigment.2018, 149, 456.10.1016/j.dyepig.2017.10.029Search in Google Scholar

[19] A. Devaux, F. Cucinotta, S. Kehr, L. De Cola, Functionalization and assembling of inorganic nanocontainers for optical and biomedical applications. In Functional Supramolecular Architectures; WILEY-VCH Verlag & Co. KGaA: Weinheim, Germany, 2014; pp. 281–342.10.1002/9783527689897.ch09Search in Google Scholar

[20] M. Zaarour, B. Dong, I. Naydenova, R. Retoux, S. Mintova, Progress in zeolite synthesis promotes advanced applications. Microporous Mesoporous Mater.2014, 189, 11.10.1016/j.micromeso.2013.08.014Search in Google Scholar

[21] P. Demontis, G. Stara, G. B. Suffritti, Behavior of water in the hydrophobic zeolite silicalite at different temperatures. A molecular dynamics study. J. Phys. Chem. B2003, 107, 4426.10.1021/jp0300849Search in Google Scholar

[22] C. Torres, J. Gulín-González, E. Navas-Conyedo, P. Demontis, G. B. Suffritti, The behavior of silicalite-1 under high pressure conditions studied by computational simulation. Struct. Chem.2013, 24, 909.10.1007/s11224-013-0241-1Search in Google Scholar

[23] T. Zhou, P. Bai, J. I. Siepmann, A. E. Clark, Deconstructing the confinement effect upon the organization and dynamics of water in hydrophobic nanoporous materials: lessons learned from zeolites. J. Phys. Chem. C2017, 121, 22015.10.1021/acs.jpcc.7b04991Search in Google Scholar

[24] K. Ståhl, Å. Kvick, S. Ghose, One-dimensional water chain in the zeolite bikitaite: Neutron diffraction study at 13 and 295 K. Zeolites1989, 9, 303.10.1016/0144-2449(89)90076-6Search in Google Scholar

[25] S. Quartieri, A. Sani, G. Vezzalini, E. Galli, E. Fois, A. Gamba, G. Tabacchi, One-dimensional ice in bikitaite: single-crystal X-ray diffraction, infra-red spectroscopy and ab-initio molecular dynamics studies. Microporous Mesoporous Mater.1999, 30, 77.10.1016/S1387-1811(99)00027-XSearch in Google Scholar

[26] E. Fois, G. Tabacchi, S. Quartieri, G. Vezzalini, Dipolar host/guest interactions and geometrical confinement at the basis of the stability of one-dimensional ice in zeolite bikitaite. J. Chem. Phys.1999, 111, 355.10.1063/1.479277Search in Google Scholar

[27] P. Demontis, G. Stara, G. B. Suffritti, Dynamical behavior of one-dimensional water molecule chains in zeolites: nanosecond time-scale molecular dynamics simulations of bikitaite. J. Chem. Phys.2004, 120, 9233.10.1063/1.1697382Search in Google Scholar PubMed

[28] C. Ceriani, E. Fois, A. Gamba, G. Tabacchi, O. Ferro, S. Quartieri, G. Vezzalini, Dehydration dynamics of bikitaite: part II. Ab initio molecular dynamics study. Am. Mineral.2004, 89, 102.10.2138/am-2004-0113Search in Google Scholar

[29] O. Ferro, S. Quartieri, G. Vezzalini, E. Fois, A. Gamba, G. Tabacchi, High-pressure behavior of bikitaite: an integrated theoretical and experimental approach. Am. Mineral.2002, 87, 1415.10.2138/am-2002-1018Search in Google Scholar

[30] P. Comodi, G. D. Gatta, P. F. Zanazzi, Effects of pressure on the structure of bikitaite. Eur. J. Mineral.2003, 15, 247.10.1127/0935-1221/2003/0015-0247Search in Google Scholar

[31] E. Fois, A. Gamba, G. Tabacchi, O. Ferro, S. Quartieri, G. Vezzalini, A theoretical investigation on pressure-induced changes in the vibrational spectrum of zeolite bikitaite. Stud. Surf. Sci. Catal.2002, 142 B, 1877.10.1016/S0167-2991(02)80364-0Search in Google Scholar

[32] B. A. Kolesov, C. A. Geiger, Raman spectroscopic study of H2O in bikitaite: “One-dimensional ice.” Am. Mineral.2002, 87, 1426.10.2138/am-2002-1019Search in Google Scholar

[33] Y. V. Seryotkin, Evolution of the bikitaite structure at high pressure: a single-crystal X-ray diffraction study. Microporous Mesoporous Mater.2016, 226, 415.10.1016/j.micromeso.2016.02.021Search in Google Scholar

[34] E. Fois, A. Gamba, G. Tabacchi, S. Quartieri, G. Vezzalini, Water molecules in single file: first-principles studies of one-dimensional water chains in zeolites. J. Phys. Chem. B2001, 105, 3012.10.1021/jp002752lSearch in Google Scholar

[35] E. Fois, A. Gamba, G. Tabacchi, S. Quartieri, G. Vezzalini, On the collective properties of water molecules in one-dimensional zeolitic channels. Phys. Chem. Chem. Phys.2001, 3, 4158.10.1039/b102231hSearch in Google Scholar

[36] E. Fois, A. Gamba, C. Medici, G. Tabacchi, S. Quartieri, E. Mazzucato, R. Arletti, G. Vezzalini, V. Dmitriev, High pressure deformation mechanism of Li-ABW: synchrotron XRPD study and ab initio molecular dynamics simulations. Microporous Mesoporous Mater.2008, 115, 267.10.1016/j.micromeso.2008.01.041Search in Google Scholar

[37] P. Demontis, G. Stara, G. B. Suffritti, Molecular dynamics simulation of anomalous diffusion of one-dimensional water molecule chains in Li-ABW zeolite. Microporous Mesoporous Mater.2005, 86, 166.10.1016/j.micromeso.2005.07.007Search in Google Scholar

[38] P. Norby, A. N. Christensen, I. G. K. Andersen, H. A. Hjuler, J. H. von Barner, N. J. Bjerrum, T. Tokii, R. A. Zingaro, Hydrothermal preparation of zeolite Li – A(BW), LiAlSiO4·H2O, and structure determination from powder diffraction data by direct methods. Acta Chem. Scand.1986, 40a, 500.10.3891/acta.chem.scand.40a-0500Search in Google Scholar

[39] F.-X. Coudert, R. Vuilleumier, A. Boutin, Dipole moment, hydrogen bonding and IR spectrum of confined water. ChemPhys Chem.2006, 7, 2464.10.1002/cphc.200600561Search in Google Scholar PubMed

[40] P. Gómez-Álvarez, S. Calero, Insights into the microscopic behaviour of nanoconfined water: host structure and thermal effects. CrystEngComm.2015, 17, 412.10.1039/C4CE01335BSearch in Google Scholar

[41] P. Demontis, J. Gulín-González, H. Jobic, G. B. Suffritti, Diffusion of water in zeolites Na A and NaCa A: a molecular dynamics simulation study. J. Phys. Chem. C2010, 114, 18612.10.1021/jp107060sSearch in Google Scholar

[42] L. B. McCusker, C. Baerlocher, E. Jahn, M. Bülow, The triple helix inside the large-pore aluminophosphate molecular sieve VPI-5. Zeolites1991, 11, 308.10.1016/0144-2449(91)80292-8Search in Google Scholar

[43] E. Fois, A. Gamba, A. Tilocca, Structure and dynamics of the flexible triple helix of water inside VPI-5 molecular sieves. J. Phys. Chem. B2002, 106, 4806.10.1021/jp014276kSearch in Google Scholar

[44] F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett.2012, 109, 035701.10.1103/PhysRevLett.109.035701Search in Google Scholar

[45] E. Fois, A. Gamba, G. Tabacchi, S. Quartieri, R. Arletti, G. Vezzalini, High-pressure behaviour of yugawaralite at different water content: an ab initio study. Stud. Surf. Sci. Catal.2005, 155, 271.10.1016/S0167-2991(05)80155-7Search in Google Scholar

[46] C. Betti, E. Fois, E. Mazzucato, C. Medici, S. Quartieri, G. Tabacchi, G. Vezzalini, V. Dmitriev, Gismondine under HP: deformation mechanism and re-organization of the extra-framework species. Microporous Mesoporous Mater.2007, 103, 190.10.1016/j.micromeso.2007.01.051Search in Google Scholar

[47] G. D. Gatta, Y. Lee, Zeolites at high pressure: a review. Mineral. Mag.2014, 78, 267.10.1180/minmag.2014.078.2.04Search in Google Scholar

[48] R. Arletti, E. Fois, L. Gigli, G. Vezzalini, S. Quartieri, G. Tabacchi, Irreversible conversion of a water–ethanol solution into an organized two-dimensional network of alternating supramolecular units in a hydrophobic zeolite under pressure. Angew. Chem. Int. Ed.2017, 56, 2105.10.1002/anie.201610949Search in Google Scholar PubMed

[49] G. D. Gatta, P. Lotti, G. Tabacchi, The effect of pressure on open-framework silicates: elastic behaviour and crystal–fluid interaction. Phys. Chem. Miner.2018, 45, 115.10.1007/s00269-017-0916-zSearch in Google Scholar

[50] Y. Kim, J. Choi, T. Vogt, Y. Lee, Structuration under pressure: spatial separation of inserted water during pressure-induced hydration in mesolite. Am. Mineral.2018, 103, 175.10.2138/am-2018-6252Search in Google Scholar

[51] E. Fois, A. Gamba, G. Tabacchi, R. Arletti, S. Quartieri, G. Vezzalini, The “template” effect of the extra-framework content on zeolite compression: the case of yugawaralite. Am. Mineral.2005, 90, 28.10.2138/am.2005.1653Search in Google Scholar

[52] G. D. Gatta, Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure. Zeitschrift fur Krist.2008, 223, 160.10.1524/zkri.2008.0013Search in Google Scholar

[53] T. Marqueño, D. Santamaria-Perez, J. Ruiz-Fuertes, R. Chuliá-Jordán, J. L. Jordá, F. Rey, C. McGuire, A. Kavner, S. MacLeod, D. Daisenberger, C. Popescu, P. Rodriguez-Hernandez, A. Muñoz, An ultrahigh CO2-loaded silicalite-1 zeolite: structural stability and physical properties at high pressures and temperatures. Inorg. Chem.2018, 57, 6447.10.1021/acs.inorgchem.8b00523Search in Google Scholar PubMed

[54] Y. Lee, C. C. Kao, S. J. Kim, H. H. Lee, D. R. Lee, T. J. Shin, J. Y. Choi, Water nanostructures confined inside the quasi-one-dimensional channels of LTL zeolite. Chem. Mater.2007, 19, 6252.10.1021/cm702198xSearch in Google Scholar

[55] K. S. Smirnov, D. Bougeard, Water behaviour in nanoporous aluminosilicates. J. Phys. Condens. Matter2010, 22, 284115.10.1088/0953-8984/22/28/284115Search in Google Scholar PubMed

[56] E. Fois, G. Tabacchi, A. Devaux, P. Belser, D. Brühwiler, G. Calzaferri, Host-guest interactions and orientation of dyes in the one-dimensional channels of zeolite L. Langmuir2013, 29, 9188.10.1021/la400579wSearch in Google Scholar PubMed

[57] D. Brühwiler, G. Calzaferri, T. Torres, J. H. Ramm, N. Gartmann, L.-Q. Dieu, I. López-Duarte, M. V. Martínez-Díaz, Nanochannels for supramolecular organization of luminescent guests. J. Mater. Chem.2009, 19, 8040.10.1039/b907308fSearch in Google Scholar

[58] N. Zucchetto, D. Brühwiler, Strategies for localizing multiple functional groups in mesoporous silica particles through a one-pot synthesis. Chem. Mater.2018, 30, 7280.10.1021/acs.chemmater.8b03603Search in Google Scholar

[59] B. Onida, B. Bonelli, L. Flora, F. Geobaldo, C. O. Arean, E. Garrone, Permeability of micelles in surfactant-containing MCM-41 silica as monitored by embedded dye molecules. Chem. Commun.2001, 2216.10.1039/b105261fSearch in Google Scholar PubMed

[60] F. Cucinotta, F. Carniato, A. Devaux, L. De Cola, L. Marchese, Efficient photoinduced energy transfer in a newly developed hybrid SBA-15 photonic antenna. Chem. A Eur. J.2012, 18, 15310.10.1002/chem.201202505Search in Google Scholar PubMed

[61] A. J. Bagnall, M. Santana Vega, J. Martinelli, K. Djanashvili, F. Cucinotta, Mesoscopic FRET antenna materials by self-assembling iridium(III) complexes and BODIPY dyes. Chem. A Eur. J.2018, 24, 11992.10.1002/chem.201802745Search in Google Scholar

[62] F. Cucinotta, B. P. Jarman, C. Caplan, S. J. Cooper, H. J. Riggs, J. Martinelli, K. Djanashvili, E. La Mazza, F. Puntoriero, Light-harvesting antennae using the host-guest chemistry of mesoporous organosilica. ChemPhotoChem.2018, 2, 196.10.1002/cptc.201700144Search in Google Scholar

[63] R. Giustetto, K. Seenivasan, F. Bonino, G. Ricchiardi, S. Bordiga, M. R. Chierotti, R. Gobetto, Host/guest interactions in a sepiolite-based maya blue pigment: a spectroscopic study. J. Phys. Chem. C2011, 115, 16764.10.1021/jp203270cSearch in Google Scholar

[64] E. Fois, A. Gamba, A. Tilocca, On the unusual stability of Maya blue paint: Molecular dynamics simulations. Microporous Mesoporous Mater.2003, 57, 263.10.1016/S1387-1811(02)00596-6Search in Google Scholar

[65] A. L. Costa, A. C. Gomes, R. C. Pereira, M. Pillinger, I. S. Gonçalves, M. Pineiro, J. S. Seixas de Melo, Interactions and supramolecular organization of sulfonated indigo and thioindigo dyes in layered hydroxide hosts. Langmuir2018, 34, 453.10.1021/acs.langmuir.7b03735Search in Google Scholar PubMed

[66] N. Epelde-Elezcano, V. Martínez-Martínez, E. Duque-Redondo, I. Temiño, H. Manzano, I. López-Arbeloa, Strategies for modulating the luminescence properties of pyronin Y dye–clay films: an experimental and theoretical study. Phys. Chem. Chem. Phys.2016, 18, 8730.10.1039/C6CP00382FSearch in Google Scholar PubMed

[67] R. Medishetty, J. K. Zaręba, D. Mayer, M. Samoć, R. A. Fischer, Nonlinear optical properties, upconversion and lasing in metal organic frameworks. Chem. Soc. Rev.2017, 46, 4976.10.1039/C7CS00162BSearch in Google Scholar

[68] P. Kittikhunnatham, B. Som, V. Rassolov, M. Stolte, F. Würthner, L. S. Shimizu, A. B. Greytak, Fluorescence polarization measurements to probe alignment of a bithiophene dye in one-dimensional channels of self-assembled phenylethynylene bis-urea macrocycle crystals. J. Phys. Chem. C2017, 121, 18102.10.1021/acs.jpcc.7b07136Search in Google Scholar

[69] L. Sun, H. Xing, Z. Liang, J. Yu, R. Xu, A 4+4 strategy for synthesis of zeolitic metal–organic frameworks: an indium-MOF with SOD topology as a light-harvesting antenna. Chem. Commun.2013, 49, 11155.10.1039/c3cc43383hSearch in Google Scholar PubMed

[70] T. H. Noh, H. Lee, J. Jang, O. S. Jung, Organization and energy transfer of fused aromatic hydrocarbon guests within anion-confining nanochannel MOFs. Angew. Chem. Int. Ed.2015, 54, 9284.10.1002/anie.201503588Search in Google Scholar PubMed

[71] T. H. Noh, O. S. Jung, Recent advances in various metal-organic channels for photochemistry beyond confined spaces. Acc. Chem. Res.2016, 49, 1835.10.1021/acs.accounts.6b00291Search in Google Scholar

[72] C. Baerlocher, L. B. McCusker, D. H. Olson, Atlas of zeolite framework types. Published on behalf of the Structure Commission of the International Zeolite Association by Elsevier: 2007.Search in Google Scholar

[73] H. Maas, G. Calzaferri, Trapping energy from and injecting energy into dye-zeolite nanoantennae. Angew. Chem. Int. Ed.2002, 41, 2284.10.1002/1521-3773(20020703)41:13<2284::AID-ANIE2284>3.0.CO;2-5Search in Google Scholar

[74] G. Calzaferri, Artificial photosynthesis. Top. Catal.2010, 53, 130.10.1007/s11244-009-9424-9Search in Google Scholar

[75] H. Manzano, L. Gartzia-Rivero, J. Bañuelos, I. López-Arbeloa, Ultraviolet-visible dual absorption by single BODIPY dye confined in LTL zeolite nanochannels. J. Phys. Chem. C2013, 117, 13331.10.1021/jp4051676Search in Google Scholar

[76] H. Li, Y. Wang, W. Zhang, B. Liu, G. Calzaferri, Fabrication of oriented zeolite L monolayers employing luminescent perylenediimide-bridged silsesquioxane precursor as the covalent linker. Chem. Commun.2007, 2853.10.1039/b702175eSearch in Google Scholar

[77] L. Gartzia-Rivero, J. Bañuelos, I. López-Arbeloa, Photoactive nanomaterials inspired by nature: LTL zeolite doped with laser dyes as artificial light harvesting systems. Materials (Basel).2017, 10, 495.10.3390/ma10050495Search in Google Scholar

[78] L. Gigli, R. Arletti, G. Tabacchi, E. Fois, J. G. Vitillo, G. Martra, G. Agostini, S. Quartieri, G. Vezzalini, Close-packed dye molecules in zeolite channels self-assemble into supramolecular nanoladders. J. Phys. Chem. C2014, 118, 15732.10.1021/jp505600eSearch in Google Scholar

[79] L. Gigli, R. Arletti, G. Tabacchi, M. Fabbiani, J. G. Vitillo, G. Martra, A. Devaux, I. Miletto, S. Quartieri, G. Calzaferri, E. Fois, structure and host–guest interactions of perylene–diimide dyes in zeolite L nanochannels. J. Phys. Chem. C2018, 122, 3401.10.1021/acs.jpcc.7b10607Search in Google Scholar

[80] V. Vohra, G. Calzaferri, S. Destri, M. Pasini, W. Porzio, C. Botta, Toward white light emission through efficient two-step energy transfer in hybrid nanofibers. ACS Nano2010, 4, 1409.10.1021/nn9017922Search in Google Scholar

[81] Y. Wang, H. Li, Luminescent materials of zeolite functionalized with lanthanides. CrystEngComm.2014, 16, 9764.10.1039/C4CE01455CSearch in Google Scholar

[82] R. Sola-Llano, Y. Fujita, L. Gómez-Hortigüela, A. Alfayate, H. Ujii, E. Fron, S. Toyouchi, J. Perez-Pariente, I. Lopez-Arbeloa, V. Martinez-Martinez, One-directional Antenna systems: energy transfer from monomers to J-Aggregates within 1D nanoporous aluminophosphates. ACS Photonics2018, 5, 151.10.1021/acsphotonics.7b00553Search in Google Scholar

[83] Z. Popović, M. Otter, G. Calzaferri, L. De Cola, Self-assembling living systems with functional nanomaterials. Angew. Chem. Int. Ed.2007, 46, 6188.10.1002/anie.200701019Search in Google Scholar

[84] N. S. Kehr, Microcontact printing of (bio)molecules on self-assembled monolayers of zeolites L and surface mediated drug delivery. Adv. Porous Mater.2018, 6, 19.10.1166/apm.2018.1143Search in Google Scholar

[85] H. Lülf, A. Bertucci, D. Septiadi, R. Corradini, L. De Cola, Multifunctional inorganic nanocontainers for DNA and drug delivery into living cells. Chem. A Eur. J.2014, 20, 10900.10.1002/chem.201403232Search in Google Scholar

[86] Y. Wang, H. Li, Y. Feng, H. Zhang, G. Calzaferri, T. Ren, Orienting zeolite L microcrystals with a functional linker. Angew. Chem. Int. Ed.2010, 49, 1434.10.1002/anie.200905354Search in Google Scholar

[87] G. Calzaferri, R. Méallet-Renault, D. Brühwiler, R. Pansu, I. Dolamic, T. Dienel, P. Adler, H. Li, A. Kunzmann, Designing dye-nanochannel antenna hybrid materials for light harvesting, transport and trapping. ChemPhysChem.2011, 12, 580.10.1002/cphc.201000947Search in Google Scholar

[88] S. Doungmanee, T. Siritanon, W. Insuwan, S. Jungsuttiwong, K. Rangsriwatananon, Multi step energy transfer between three Si_LTL and SiGe_LTL zeolite-loaded dyes. J. Porous Mater.2018, 25, 1381.10.1007/s10934-017-0550-7Search in Google Scholar

[89] G. Schulz-Ekloff, D. Wöhrle, B. van Duffel, R. A. Schoonheydt, Chromophores in porous silicas and minerals: preparation and optical properties. Microporous Mesoporous Mater.2002, 51, 91.10.1016/S1387-1811(01)00455-3Search in Google Scholar

[90] V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R. G. Bell, C. R. A. Catlow, Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev.2015, 44, 7044.10.1039/C5CS00029GSearch in Google Scholar

[91] G. Paul, C. Bisio, I. Braschi, M. Cossi, G. Gatti, E. Gianotti, L. Marchese, Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chem. Soc. Rev.2018, 47, 5684.10.1039/C7CS00358GSearch in Google Scholar

[92] P. Demontis, G. B. Suffritti, S. Quartieri, A. Gamba, E. S. Fois, Molecular dynamics studies on zeolites. Part 5. – discussion of the structural changes of silicalite. J. Chem. Soc. Faraday Trans.1991, 87, 1657.10.1039/FT9918701657Search in Google Scholar

[93] A. M. Pintus, A. Gabrieli, F. G. Pazzona, G. Pireddu, P. Demontis, Molecular QCA embedding in microporous materials. (2018), arXiv:1808.07694v1, https://arxiv.org/pdf/1808.07694.pdf.Search in Google Scholar

[94] A. Rimola, D. Costa, M. Sodupe, J.-F. Lambert, P. Ugliengo, Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem. Rev.2013, 113, 4216.10.1021/cr3003054Search in Google Scholar PubMed

[95] E. Fois, A. Gamba, G. Tabacchi, Influence of silanols condensation on surface properties of micelle-templated silicas: a modelling study. Microporous Mesoporous Mater.2008, 116, 718.10.1016/j.micromeso.2008.06.002Search in Google Scholar

[96] E. Fois, A. Gamba, G. Tabacchi, S. Coluccia, G. Martra, Ab initio study of defect sites at the inner surfaces of mesoporous silicas. J. Phys. Chem. B2003, 107, 10767.10.1021/jp036182bSearch in Google Scholar

[97] F. X. Coudert, A. H. Fuchs, Computational characterization and prediction of metal-organic framework properties. Coord. Chem. Rev.2015, 307, 211.10.1016/j.ccr.2015.08.001Search in Google Scholar

[98] M. Fischer, J. R. B. Gomes, M. Jorge, Computational approaches to study adsorption in MOFs with unsaturated metal sites. Mol. Simul.2014, 40, 537.10.1080/08927022.2013.829228Search in Google Scholar

[99] G. Fraux, F.-X. Coudert, Recent advances in the computational chemistry of soft porous crystals. Chem. Commun.2017, 53, 7211.10.1039/C7CC03306KSearch in Google Scholar PubMed

[100] B. Bussemer, D. Munsel, H. Wünscher, G. J. Mohr, U. W. Grummt, Electronic properties of neutral dyes in the channels of zeolite L: a combined spectroscopic and quantum chemical study. J. Phys. Chem. B2007, 111, 8.10.1021/jp064986wSearch in Google Scholar PubMed

[101] E. Fois, G. Tabacchi, G. Calzaferri, Interactions, behavior, and stability of fluorenone inside zeolite nanochannels. J. Phys. Chem. C2010, 114, 10572.10.1021/jp101635pSearch in Google Scholar

[102] X. Zhou, T. A. Wesolowski, G. Tabacchi, E. Fois, G. Calzaferri, A. Devaux, First-principles simulation of the absorption bands of fluorenone in zeolite L. Phys. Chem. Chem. Phys.2013, 15, 159.10.1039/C2CP42750HSearch in Google Scholar

[103] W. Insuwan, K. Rangsriwatananon, J. Meeprasert, S. Namuangruk, Y. Surakhot, N. Kungwan, S. Jungsuttiwong, Combined experimental and theoretical investigation on photophysical properties of trans-azobenzene confined in LTL zeolite: effect of cis-isomer forming. Microporous Mesoporous Mater.2014, 197, 348.10.1016/j.micromeso.2014.07.004Search in Google Scholar

[104] W. Insuwan, K. Rangsriwatananon, J. Meeprasert, S. Namuangruk, Y. Surakhot, N. Kungwan, S. Jungsuttiwong, Combined experimental and theoretical investigation on fluorescence resonance energy transfer of dye loaded on LTL zeolite. Microporous Mesoporous Mater.2017, 241, 372.10.1016/j.micromeso.2016.12.020Search in Google Scholar

[105] E. Fois, G. Tabacchi, G. Calzaferri, Orientation and order of xanthene dyes in the one-dimensional channels of zeolite L: bridging the gap between experimental data and molecular behavior. J. Phys. Chem. C2012, 116, 16784.10.1021/jp304962wSearch in Google Scholar

[106] L. Viani, A. Minoia, J. Cornil, D. Beljonne, H. J. Egelhaaf, J. Gierschner, Resonant energy transport in dye-filled monolithic crystals of zeolite L: modeling of inhomogeneity. J. Phys. Chem. C2016, 120, 27192.10.1021/acs.jpcc.6b10038Search in Google Scholar

[107] F. Cucinotta, A. Guenet, C. Bizzarri, W. Mroz, C. Botta, B. Milian-Medina, J. Gierschner, L. De Cola, Energy transfer at the zeolite l boundaries: towards photo- and electroresponsive materials. ChemPlusChem.2014, 79, 45.10.1002/cplu.201300272Search in Google Scholar PubMed

[108] G. Calzaferri, Entropy in multiple equilibria, theory and applications. Phys. Chem. Chem. Phys.2017, 19, 10611.10.1039/C7CP00584ASearch in Google Scholar

[109] G. Tabacchi, E. Fois, G. Calzaferri, Structure of nanochannel entrances in stopcock-functionalized zeolite L composites. Angew. Chem. Int. Ed.2015, 54, 11112.10.1002/anie.201504745Search in Google Scholar PubMed

[110] G. Tabacchi, G. Calzaferri, E. Fois, One-dimensional self-assembly of perylene-diimide dyes by unidirectional transit of zeolite channel openings. Chem. Commun.2016, 52, 11195.10.1039/C6CC05303CSearch in Google Scholar

[111] L. Gigli, R. Arletti, E. Fois, G. Tabacchi, S. Quartieri, V. Dmitriev, G. Vezzalini, Unravelling the high-pressure behaviour of dye-zeolite L hybrid materials. Crystals2018, 8, 79.10.3390/cryst8020079Search in Google Scholar

[112] X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Ligand‐directed strategy for zeolite‐type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed.2006, 45, 1557.10.1002/anie.200503778Search in Google Scholar PubMed

[113] F. Chen, L. Wang, Y. Xing, J. Zhang, Stable photoluminescence of lanthanide complexes in aqueous media through metal-organic frameworks nanoparticles with plugged surface. J. Colloid Interface Sci.2018, 527, 68.10.1016/j.jcis.2018.05.025Search in Google Scholar PubMed

[114] J. G. Kim, T. H. Noh, Y. Cho, J. K. Park, O.-S. Jung, A triple-function nanotube as a reactant reservoir, reaction platform, and byproduct scavenger for photo-cyclopropanation. Chem. Commun.2016, 52, 2545.10.1039/C5CC09967FSearch in Google Scholar

[115] T. H. Noh, J. Jang, W. Hong, H. Lee, O.-S. Jung, Truncated trigonal prismatic tubular crystals consisting of a zeolite L-mimic metal-organic framework. Chem. Commun.2014, 50, 7451.10.1039/c4cc03097dSearch in Google Scholar PubMed

[116] L. Gigli, R. Arletti, S. Quartieri, F. Di Renzo, G. Vezzalini, The high thermal stability of the synthetic zeolite K–L: dehydration mechanism by in situ SR-XRPD experiments. Microporous Mesoporous Mater.2013, 177, 8.10.1016/j.micromeso.2013.04.015Search in Google Scholar

[117] Barrer, R. M. Hydrothermal chemistry of zeolites. Academic Press, London, UK, 1982.Search in Google Scholar

[118] L. Gigli, G. Vezzalini, S. Quartieri, R. Arletti, Compressibility behavior and pressure-induced over-hydration of zeolite K–AlSi-L. Microporous Mesoporous Mater.2019, 276, 160.10.1016/j.micromeso.2018.09.031Search in Google Scholar

[119] D. Comboni, G. D. Gatta, P. Lotti, M. Merlini, M. Hanfland, Crystal-fluid interactions in laumontite. Microporous Mesoporous Mater.2018, 263, 86.10.1016/j.micromeso.2017.12.003Search in Google Scholar

[120] A. Y. Likhacheva, Y. V. Seryotkin, A. Y. Manakov, S. V. Goryainov, A. I. Ancharov, M. A. Sheromov, Pressure-induced over-hydration of thomsonite: A synchrotron powder diffraction study. Am. Mineral.2007, 92, 1610.10.2138/am.2007.2566Search in Google Scholar

[121] A. Devaux, C. Minkowski, G. Calzaferri, Electronic and vibrational properties of fluorenone in the channels of zeolite L. Chem. A Eur. J.2004, 10, 2391.10.1002/chem.200305673Search in Google Scholar PubMed

[122] R. M. Barrer, H. Villiger, The crystal structure of the synthetic zeolite L. Z. Kristallogr. Cryst. Mater.1969, 128, 352.10.1524/zkri.1969.128.16.352Search in Google Scholar

[123] G. Artioli, A. Kvick, Synchrotron X-ray Rietveld study of perlialite, the natural counterpart of synthetic zeolite-L. Eur. J. Mineral.1990, 2, 749.10.1127/ejm/2/6/0749Search in Google Scholar

[124] Y. Lee, S. J. Kim, D. C. Ahn, N. S. Shin, Confined water clusters in a synthetic rubidium gallosilicate with zeolite LTL topology. Chem. Mater.2007, 19, 2277.10.1021/cm070227uSearch in Google Scholar

[125] W. Depmeier, Some examples of temperature and time resolved studies of the dehydration and hydration behavior of zeolites and clathrates. Part. Part. Syst. Charact.2009, 26, 138.10.1002/ppsc.200800012Search in Google Scholar

[126] X. Hu, W. Depmeier, Pitfalls in the X-ray structure determination of pseudosymmetric sodalites, and possibly zeolites. Z. Kristallogr. NCS1992, 201, 99.10.1524/zkri.1992.201.1-2.99Search in Google Scholar

[127] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

[128] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem.2006, 27, 1787.10.1002/jcc.20495Search in Google Scholar PubMed

[129] A. Kremleva, T. Vogt, N. Rösch, Monovalent cation-exchanged natrolites and their behavior under pressure. A computational study. J. Phys. Chem. C2013, 117, 19020.10.1021/jp406037cSearch in Google Scholar

[130] M. Fischer, Template effects on the pressure-dependent behavior of chabazite-type fluoroaluminophosphates: a computational approach. Phys. Chem. Miner.2018, DOI: https://doi.org/10.1007/s00269-018-1010-x.10.1007/s00269-018-1010-xSearch in Google Scholar

[131] G. D. Gatta, G. Tabacchi, E. Fois, Y. Lee, Behaviour at high pressure of Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental–computational study. Phys. Chem. Miner.2016, 43, 209.10.1007/s00269-015-0787-0Search in Google Scholar

[132] M. Fischer, R. G. Bell, Modeling CO2 adsorption in zeolites using DFT-derived charges: comparing system-specific and generic models. J. Phys. Chem. C2013, 117, 24446.10.1021/jp4086969Search in Google Scholar

[133] M. Fischer, R. G. Bell, Interaction of hydrogen and carbon dioxide with sod-type zeolitic imidazolate frameworks: a periodic DFT-D study. CrystEngComm.2014, 16, 1934.10.1039/c3ce42209gSearch in Google Scholar

[134] G. Li, E. A. Pidko, The nature and catalytic function of cation sites in zeolites: a computational perspective. ChemCatChem.2019, 11, 134.10.1002/cctc.201801493Search in Google Scholar

[135] E. Spanó, G. Tabacchi, A. Gamba, E. Fois, On the role of Ti(IV) as a lewis acid in the chemistry of titanium zeolites: formation, structure, reactivity, and aging of ti-peroxo oxidizing intermediates. a first principles study. J. Phys. Chem. B2006, 110, 21651.10.1021/jp065494mSearch in Google Scholar PubMed

[136] L. Valenzano, B. Civalleri, S. Chavan, G. T. Palomino, C. O. Areán, S. Bordiga, Computational and experimental studies on the adsorption of CO, N2, and CO2 on Mg-MOF-74. J. Phys. Chem. C2010, 114, 11185.10.1021/jp102574fSearch in Google Scholar

[137] M. Fischer, Structure and bonding of water molecules in zeolite hosts: Benchmarking plane-wave DFT against crystal structure data. Z. Kristallogr. Cryst. Mater.2015, 230, 325.10.1515/zkri-2014-1809Search in Google Scholar

[138] M. Fischer, R. J. Angel, Accurate structures and energetics of neutral-framework zeotypes from dispersion-corrected DFT calculations. J. Chem. Phys.2017, 146, 174111.10.1063/1.4981528Search in Google Scholar PubMed

[139] H. Hay, G. Ferlat, M. Casula, A. P. Seitsonen, F. Mauri, Dispersion effects in SiO2 polymorphs: An ab initio study. Phys. Rev. B2015, 92, 144111.10.1103/PhysRevB.92.144111Search in Google Scholar

[140] M. Fischer, F. O. Evers, F. Formalik, A. Olejniczak, Benchmarking DFT-GGA calculations for the structure optimisation of neutral-framework zeotypes. Theor. Chem. Acc.2016, 135, 257.10.1007/s00214-016-2014-6Search in Google Scholar

[141] M. Fischer, M. R. Delgado, C. O. Areán, C. O. Duran, CO adsorption complexes in zeolites: How does the inclusion of dispersion interactions affect predictions made from DFT calculations? The case of Na-CHA. Theor. Chem. Acc.2015, 134, 91.10.1007/s00214-015-1692-9Search in Google Scholar

[142] R. Arletti, E. Fois, G. Tabacchi, S. Quartieri, G. Vezzalini, Pressure-induced penetration of water-ethanol mixtures in all-silica ferrierite. Adv. Sci. Lett.2017, 23, 5966.10.1166/asl.2017.9082Search in Google Scholar

[143] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, et al., Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter2017, 29, 465901.10.1088/1361-648X/aa8f79Search in Google Scholar PubMed

[144] IBM Corp. 1990–2017 and MPI für Festkörperforschung Stuttgart 1997–2001 CPMD: Car Parrinello Molecular Dynamics. (2017).Search in Google Scholar

[145] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B1990, 41, 7892.10.1103/PhysRevB.41.7892Search in Google Scholar PubMed

[146] N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B1991, 43, 1993.10.1103/PhysRevB.43.1993Search in Google Scholar

[147] L. Kleinman, D. M. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett.1982, 48, 1425.10.1103/PhysRevLett.48.1425Search in Google Scholar

[148] E. Fois, G. Tabacchi, D. Barreca, A. Gasparotto, E. Tondello, “Hot” surface activation of molecular complexes: Insight from modeling studies. Angew. Chem. Int. Ed.2010, 49, 1944.10.1002/anie.200907312Search in Google Scholar PubMed

[149] G. Tabacchi, E. Fois, D. Barreca, A. Gasparotto, CVD precursors for transition metal oxide nanostructures: molecular properties, surface behavior and temperature effects. Phys. Status Solidi2014, 211, 251.10.1002/pssa.201330085Search in Google Scholar

[150] G. Tabacchi, E. Gianotti, E. Fois, G. Martra, L. Marchese, S. Coluccia, A. Gamba, Understanding the vibrational and electronic features of Ti(IV) sites in mesoporous silicas by integrated Ab initio and spectroscopic investigations. J. Phys. Chem. C2007, 111, 4946.10.1021/jp0665168Search in Google Scholar

[151] A. Tilocca, E. Fois, The color and stability of maya blue: TDDFT calculations. J. Phys. Chem. C2009, 113, 8683.10.1021/jp810945aSearch in Google Scholar

[152] D. Barreca, E. Fois, A. Gasparotto, R. Seraglia, E. Tondello, G. Tabacchi, How does CuII convert into CuI? An unexpected ring-mediated single-electron reduction. Chem. A Eur. J.2011, 17, 10864.10.1002/chem.201101551Search in Google Scholar PubMed

[153] C. Deiana, E. Fois, G. Martra, S. Narbey, F. Pellegrino, G. Tabacchi, On the simple complexity of carbon monoxide on oxide surfaces: facet-specific donation and backdonation effects revealed on TiO2 anatase nanoparticles. ChemPhysChem.2016, 17, 1956.10.1002/cphc.201600284Search in Google Scholar PubMed

[154] M. Fischer, DFT-based evaluation of porous metal formates for the storage and separation of small molecules. Microporous Mesoporous Mater.2016, 219, 249.10.1016/j.micromeso.2015.06.037Search in Google Scholar

[155] F. Formalik, M. Fischer, J. Rogacka, L. Firlej, B. Kuchta, Effect of low frequency phonons on structural properties of ZIFs with SOD topology. Microporous Mesoporous Mater.2018. DOI: https://doi.org/10.1016/j.micromeso.2018.09.033.10.1016/j.micromeso.2018.09.033Search in Google Scholar

[156] F. Formalik, M. Fischer, J. Rogacka, L. Firlej, B. Kuchta, Benchmarking of GGA density functionals for modeling structures of nanoporous, rigid and flexible MOFs. J. Chem. Phys.2018, 149, 064110.10.1063/1.5030493Search in Google Scholar PubMed

[157] G. Tabacchi, E. Fois, D. Barreca, A. Gasparotto, Opening the Pandora’s jar of molecule-to-material conversion in chemical vapor deposition: insights from theory. Int. J. Quantum Chem.2014, 114, 1.10.1002/qua.24505Search in Google Scholar

[158] E. S. Fois, J. I. Penman, P. A. Madden, Self-interaction corrected density functionals and the structure of metal clusters. J. Chem. Phys.1993, 98, 6352.10.1063/1.464828Search in Google Scholar

[159] S. Dudarev, G. Botton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B1998, 57, 1505.10.1103/PhysRevB.57.1505Search in Google Scholar

[160] B. Himmetoglu, A. Floris, S. de Gironcoli, M. Cococcioni, Hubbard-corrected DFT energy functionals: the LDA+U description of correlated systems. Int. J. Quantum Chem.2014, 114, 14.10.1002/qua.24521Search in Google Scholar

[161] K. Lee, J. D. Howe, L. C. Lin, B. Smit, J. B. Neaton, Small-molecule adsorption in open-site metal-organic frameworks: a systematic density functional theory study for rational design. Chem. Mater.2015, 27, 668.10.1021/cm502760qSearch in Google Scholar

[162] F. Trudu, G. Tabacchi, A. Gamba, E. Fois, Water in acid boralites: hydration effects on framework B sites. J. Phys. Chem. C2008, 112, 15394.10.1021/jp803314cSearch in Google Scholar

[163] F. Trudu, G. Tabacchi, A. Gamba, E. Fois, First principles studies on boron sites in zeolites. J. Phys. Chem. A2007, 111, 11626.10.1021/jp072071rSearch in Google Scholar PubMed

[164] P. Demontis, J. Gulín-González, M. Masia, G. B. Suffritti, The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment. J. Phys. Condens. Matter2010, 22, 284106.10.1088/0953-8984/22/28/284106Search in Google Scholar PubMed

[165] M. Hellström, M. Ceriotti, J. Behler, Nuclear quantum effects in sodium hydroxide solutions from neural network molecular dynamics simulations. J. Phys. Chem. B2018, 122, 10158.10.1021/acs.jpcb.8b06433Search in Google Scholar PubMed

[166] M. E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature2002, 417, 925.10.1038/nature00797Search in Google Scholar PubMed

[167] B. Chen, J. M. Park, I. Ivanov, G. Tabacchi, M. L. Klein, M. Parrinello, First-principles study of aqueous hydroxide solutions. J. Am. Chem. Soc.2002, 124, 8534.10.1021/ja020350gSearch in Google Scholar PubMed

[168] E. Fois, A. Gamba, G. Tabacchi, Structure and dynamics of a Brønsted acid site in a zeolite: an ab initio study of hydrogen sodalite. J. Phys. Chem. B1998, 102, 3974.10.1021/jp9808274Search in Google Scholar

[169] D. Muñoz-Santiburcio, D. Marx, Chemistry in nanoconfined water. Chem. Sci.2017, 8, 3444.10.1039/C6SC04989CSearch in Google Scholar PubMed PubMed Central

[170] E. Fois, A. Gamba, C. Medici, G. Tabacchi, Intermolecular electronic excitation transfer in a confined space: a first-principles study. ChemPhysChem2005, 6, 1917.10.1002/cphc.200400561Search in Google Scholar PubMed

[171] J. Köfinger, G. Hummer, C. Dellago, Single-file water in nanopores. Phys. Chem. Chem. Phys.2011, 13, 15403.10.1039/c1cp21086fSearch in Google Scholar PubMed PubMed Central

[172] A. Devaux, G. Calzaferri, P. Belser, P. Cao, D. Brühwiler, A. Kunzmann, Efficient and robust host-guest antenna composite for light harvesting. Chem. Mater.2014, 26, 6878.10.1021/cm503761qSearch in Google Scholar

Received: 2018-11-29
Accepted: 2019-02-19
Published Online: 2019-03-20
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2023 from https://www.degruyter.com/document/doi/10.1515/zkri-2018-2153/html
Scroll to top button