Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag March 25, 2019

High-throughput assessment of hypothetical zeolite materials for their synthesizeability and industrial deployability

Jose Luis Salcedo Perez, Maciej Haranczyk and Nils Edvin Richard Zimmermann

Abstract

Zeolites are important microporous framework materials, where 200+ structures are known to exist and many millions so-called hypothetical materials can be computationally created. Here, we screen the “Deem” database of hypothetical zeolite structures to find experimentally feasible and industrially relevant materials. We use established and existing criteria and structure descriptors (lattice energy, local interatomic distances, TTT angles), and we develop new criteria which are based on 5-th neighbor distances to T-atoms, tetrahedral order parameters (or, tetrahedrality), and porosity and channel dimensionality. Our filter funnel for screening the most attractive zeolite materials that we construct consists of nine different types of criteria and a total of 53 subcriteria. The funnel reduces the pool of candidate materials from initially >300,000 to 70 and 33, respectively, depending on the channel dimensionality constraint applied (2- and 3-dimensional vs. only 3-dimensional channels). We find that it is critically important to define longer range and more stringent criteria such as the new 5-th neighbor distances to T-atoms and the tetrahedrality descriptor in order to succeed in reducing the huge pool of candidates to a manageable number. Apart from four experimentally achieved structures (BEC, BOG, ISV, SSF), all other candidates are hypothetical frameworks, thus, representing most valuable targets for synthesis and application. Detailed analysis of the screening data allowed us to also propose an exciting future direction how such screening studies as ours could be improved and how framework generating algorithms could be competitively optimized.


Corresponding author: Dr. Nils Edvin Richard Zimmermann, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720 Berkeley, USA

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, as part of the Computational Chemical Sciences Program, and within the Nanoporous Materials Genome Center (DE-FG02-17ER16362). This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

  1. Supporting information available: List of the 215 IZA structures analysed and used for criterion definition in this work as well as our top 70 hypothetical zeolite can- didates from Deem’s database and results from a slightly different filter funnel. Furthermore, we provide a list of symbols and acronyms and abbreviations.

References

[1] A. F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites. Kongl. Svenska Vet. Ac. Handl.1756, 17, 120. Search in Google Scholar

[2] E. M. Flanigen, R. W. Broach, S. T. Wilson, Introduction. in Zeolites in Industrial Separation and Catalysis, (Ed. Santi Kulprathipanja), Wiley-VCH, Weinheim, p. 1, 2010. Search in Google Scholar

[3] S. Abate, K. Barbera, G. Centi, P. Lanzafame, S. Perathoner, Disruptive catalysis by zeolites. Catal. Sci. Technol.2016, 6, 2485. Search in Google Scholar

[4] K. Tanabe, W. F. Hölderich, Industrial application of solid acid-base catalysts. Appl. Catal. A1999, 181, 399. Search in Google Scholar

[5] P. Payra, P. K. Dutta, Zeolites: a primer. in Handbook of Zeolite Science and Technology, (Eds. S. M. Auerbach, K. A. Carrado, and P. K. Dutta) Marcel Dekker, Inc., New York, U.S.A., p. 1, 2003. Search in Google Scholar

[6] M. E. Davis, R. F. Lobo, Zeolite and molecular sieve synthesis. Chem. Mater.1992, 4, 756. Search in Google Scholar

[7] N. Zheng, X. Bu, B. Wang, P. Feng, Microporous and photoluminescent chalcogenide zeolite analogs. Science2002, 298, 2366. Search in Google Scholar

[8] P. S. Wheatley, A. R. Butler, M. S. Crane, S. Fox, B. Xiao, A. G. Rossi, I. L. Megson, R. E. Morris, NO-releasing zeolites and their antithrombotic properties. J. Am. Chem. Soc.2006, 128, 502. Search in Google Scholar

[9] C. Baerlocher, L. B. McCusker, D. H. Olsen, Atlas of Zeolite Framework Types, 6th ed., Elsevier, Amsterdam, The Netherlands, 2007. Search in Google Scholar

[10] C. Baerlocher, L. B. McCusker, Database of zeolite structures. http://www.iza-structure.org/databases. 2015. Search in Google Scholar

[11] M. M. J. Treacy, K. H. Randall, S. Rao, J. A. Perry, D. J. Chadi, Enumeration of periodic tetrahedral frameworks. Z. Kristallogr.1997, 212, 768. Search in Google Scholar

[12] M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall, M. D. Foster, Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Microp. Mesopor. Mater.2004, 74, 121. Search in Google Scholar

[13] M. D. Foster, M. M. J. Treacy, Atlas of prospective zeolite structures. http://www.hypotheticalzeolites.net. 2016. Search in Google Scholar

[14] M. W. Deem, R. Pophale, P. A. Cheeseman, D. J. Earl, Computational discovery of new zeolite-like materials. J. Phys. Chem. C2009, 113, 21353. Search in Google Scholar

[15] R. Pophale, P. A. Cheeseman, M. W. Deem, A database of new zeolite-like materials. Phys. Chem. Chem. Phys.2011, 13, 12407. Search in Google Scholar

[16] M. W. Deem, J. M. Newsame, Determination of 4-connected framework crystal structures by simulated annealing. Nature1989, 342, 260. Search in Google Scholar

[17] M. W. Deem, J. M. Newsame, Framework crystal structure solution by simulated annealing: test application to known zeolite structures. J. Am. Chem. Soc.1992, 114, 7189. Search in Google Scholar

[18] R. A. Curtis, M. W. Deem, A statistical mechanics study of ring size, ring shape, and the relation to pores found in zeolites. J. Phys. Chem. B2003, 107, 8612. Search in Google Scholar

[19] D. J. Earl, M. W. Deem, Toward a database of hypothetical zeolite structures. Ind. Eng. Chem. Res.2006, 45, 5449. Search in Google Scholar

[20] G. O. Brunner, Criteria for the evaluation of hypothetical zeolite frameworks. Zeolites1990, 10, 612. Search in Google Scholar

[21] V. A. Blatov, G. D. Ilyushin, D. M. Proserpio, The zeolite conundrum: why are there so many hypothetical zeolites and so few observed? A possible answer from the zeolite-type frameworks perceived as packings of tiles. Chem. Mater.2013, 25, 412. Search in Google Scholar

[22] M. D. Foster, O. Delgado Friedrichs, R. G. Bell, F. A. Almeida Paz, J. Klinowski, Structural evaluation of systematically enumerated hypothetical uninodal zeolites. Angew. Chem. Int. Ed.2003, 42, 3896. Search in Google Scholar

[23] M. D. Foster, O. Delgado Friedrichs, R. G. Bell, F. A. Almeida Paz, J. Klinowski, Chemical evaluation of hypothetical uninodal zeolites. J. Am. Chem. Soc.2004, 126, 9769. Search in Google Scholar

[24] M. D. Foster, A. Simperler, R. G. Bell, O. Delgado Friedrichs, F. A. Almeida Paz, J. Klinowski, Chemically feasible hypothetical crystalline networks. Nature Mater.2004, 3, 234. Search in Google Scholar

[25] M. A. Zwijnenburg, A. Simperler, S. A. Wells, R. G. Bell, Tetrahedral distortion and energetic packing penalty in “zeolite” frameworks: linked phenomena? J. Phys. Chem. B2005, 109, 14783. Search in Google Scholar

[26] A. Simperler, M. D. Foster, O. Delgado Friedrichs, R. G. Bell, F. A. Almeida Paz, J. Klinowskic, Hypothetical binodal zeolitic frameworks. Acta Crystallogr. B2005, B61, 263. Search in Google Scholar

[27] A. Sartbaeva, S. A. Wells, M. M. J. Treacy, M. F. Thorpe, The flexibility window in zeolites. Nature Mater.2006, 5, 962. Search in Google Scholar

[28] D. Majda, F. A. A. Paz, O. Delgado Friedrichs, M. D. Foster, A. Simperler, R. G. Bell, J. Klinowski, Hypothetical zeolitic frameworks: in search of potential heterogeneous catalysts. J. Phys. Chem. C2008, 112, 1040. Search in Google Scholar

[29] C. J. Dawson, V. Kapko, M. F. Thorpe, M. D. Foster, M. M. J. Treacy, Flexibility as an indicator of feasibility of zeolite frameworks. J. Phys. Chem. C2012, 116, 16175. Search in Google Scholar

[30] Y. Li, J. Yu, R. Xu, Criteria for zeolite frameworks realizable for target synthesis. Angew. Chem. Int. Ed.2013, 52, 1673. Search in Google Scholar

[31] X. Liu, S. Valero, E. Argente, V. Botti, G. Sastre, The importance of TTT angles in the feasibility of zeolites. Z. Kristallogr.2015, 230, 291. Search in Google Scholar

[32] J. Lu, L. Li, H. Cao, Y. Li, J. Yu, Screening out unfeasible hypothetical zeolite structures via the closest non-adjacent O…O pairs. Phys. Chem. Chem. Phys.2017, 19, 1276. Search in Google Scholar

[33] J.-R. Lu, C. Shi, Y. Li, J.-H. Yu, Accelerating the detection of unfeasible hypothetical zeolites via symmetric local interatomic distance criteria. Chin. Chem. Lett.2017, 28, 1365. Search in Google Scholar

[34] E. D. Kuznetsova, O. A. Blatova, V. A. Blatov, Predicting new zeolites: a combination of thermodynamic and kinetic factors. Chem. Mater.2018, 30, 2829. Search in Google Scholar

[35] G. Ceder, Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bullet.2010, 35, 693. Search in Google Scholar

[36] L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, B. Smit, In silico screening of carbon-capture materials. Nature Mater.2012, 11, 633. Search in Google Scholar

[37] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. Davidson Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, The materials project: a materials genome approach to accelerating materials innovation. APL Mater.2013, 1, 2013. Search in Google Scholar

[38] V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R. G. Bell, C. R. A. Catlow, Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev.2015, 44, 7044. Search in Google Scholar

[39] A. Jain, G. Hautier, S. P. Ong, K. Persson, New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J. Mater. Res.2016, 31, 977. Search in Google Scholar

[40] C. Draxl, M. Scheffler, NOMAD: the FAIR concept for big data-driven materials science. MRS Bullet.2018, 43, 676. Search in Google Scholar

[41] B. R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, L. M. Ghiringhelli, Uncovering structure-property relationships of materials by subgroup discovery. New J. Phys.2017, 19, 013031. Search in Google Scholar

[42] G. J. Kramer, A. J. M. de Man, R. A. van Santen, Zeolites versus aluminosilicate clusters: the validity of a local description. J. Am. Chem. Soc.1991, 113, 6435. Search in Google Scholar

[43] N. J. Henson, A. K. Cheetham, J. D. Gale, Theoretical calculations on silica frameworks and their correlation with experiment. Chem. Mater.1994, 6, 1647. Search in Google Scholar

[44] N. E. R. Zimmermann, M. Haranczyk, History and utility of zeolite framework-type discovery from a data-science perspective. Cryst. Growth Des.2016, 6, 3043. Search in Google Scholar

[45] M. J. Sanders, M. Leslie, C. R. A. Catlow, Interatomic potentials for SiO2. J. Chem. Soc. Chem. Commun.1984, 19, 1271. Search in Google Scholar

[46] M. Aykol, S. S. Dwaraknath, W. Sun, K. A. Persson, Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv.2018, 4, eaaq0148. Search in Google Scholar

[47] N. E. R. Zimmermann, B. Vorselaars, D. Quigley, B. Peters, Nucleation of NaCl from aqueous solution: critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc.2015, 137, 13352. Search in Google Scholar

[48] W. Vermeiren, J.-P. Gilson, Impact of zeolites on the petroleum and petrochemical industry. Top. Catal.2009, 52, 1131. Search in Google Scholar

[49] J. D. Gale, GULP: capabilities and prospects. Z. Kristallogr.2005, 220, 552. Search in Google Scholar

[50] M. Mazur, P. S. Wheatley, M. Navarro, W. J. Roth, M. Položij, A. Mayoral, P. Eliášová, P. Nachtigall, J. Čejka, R. E. Morris, Synthesis of ‘unfeasible’ zeolites. Nature Chem.2016, 8, 58. Search in Google Scholar

[51] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, G. Ceder, Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci.2013, 68, 314. Search in Google Scholar

[52] pymatgen’s GitHub repository. https://github.com/materialsproject/pymatgen. 2011. Search in Google Scholar

[53] G. Sastre, J. D. Gale, ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes. Microp. Mesopor. Mater.2001, 43, 27. Search in Google Scholar

[54] T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microp. Mesopor. Mater.2012, 149, 134. Search in Google Scholar

[55] F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennard, W. D. S. Motherwell, J. R. Rodgers, D. G. Watson, The Cambridge Crystallographic Data Center: computer-based search, retrieval, analysis and display of information. Acta Crystallogr. B1979, 35, 2331. Search in Google Scholar

[56] U.S. Department of Energy Office of Science User Facility: National Energy Research Scientifc Computing Center (NERSC). https://www.nersc.gov/. 2019. Search in Google Scholar

[57] C. Li, M. Moliner, A. Corma, Building zeolites from precrystallized units: nanoscale architecture. Angew. Chem. Int. Ed.2018, 57, 15330. Search in Google Scholar

[58] P. S. Wheatley, J. Čejka, R. E. Morris, Synthesis of zeolites using the ADOR (Assembly-Disassembly-Organization-Reassembly) route. J. Vis. Exp.2016, 110, 53463. Search in Google Scholar

[59] S. A. Morris, G. P. M. Bignami, Y. Tian, M. Navarro, D. S. Firth, J. Čejka, P. S. Wheatley, D. M. Dawson, W. A. Slawinski, D. S. Wragg, R. E. Morris, S. E. Ashbrook, In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6. Nature Chem.2017, 9, 1012. Search in Google Scholar

[60] V. Kapko, C. Dawson, M. M. J. Treacy, M. F. Thorpe, Flexibility of ideal zeolite frameworks. Phys. Chem. Chem. Phys.2010, 12, 8531. Search in Google Scholar

[61] V. Kapko, C. Dawson, I. Rivin, M. M. J. Treacy, Density of mechanisms within the flexibility window of zeolites. Phys. Rev. Lett.2011, 107, 164304. Search in Google Scholar

[62] M. M. J. Treacy, C. J. Dawson, V. Kapko, I. Rivin, Flexibility mechanisms in ideal zeolite frameworks. Philos. Trans. Royal Soc. A2014, 372, 20120036. Search in Google Scholar

[63] T. Conradsson, M. S. Dadachov, X. D. Zou, Synthesis and structure of (Me3N)6[Ge32O64](H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microp. Mesopor. Mater.2000, 41, 183. Search in Google Scholar

[64] J. J. Pluth, J. V. Smith, Crystal structure of boggsite, a new high-silica zeolite with the first three-dimensional channel system bounded by both 12- and 10-rings. Am. Mineral.1990, 75, 501. Search in Google Scholar

[65] L. A. Villaescusa, P. A. Barrett, M. A. Camblor, ITQ-7: a new pure silica polymorph with a three-dimensional system of large pore channels. Angew. Chem. Int. Ed.1999, 38, 1997. Search in Google Scholar

[66] S. Elomari, A. W. Burton, K. Ong, A. R. Pradhan, I. Y. Chan, Synthesis and structure solution of zeolite SSZ-65. Chem. Mater.2007, 19, 5485. Search in Google Scholar

[67] J. A. Martens, P. A. Jacobs, Phosphate-based zeolites and molecular sieves. in Catalysis and Zeolites – Fundamentals and Applications, (Eds. J. Weitkamp and L. Puppe), Springer-Verlag, Berlin, p. 53, 1999. Search in Google Scholar

[68] J.-L. Guth, H. Kessler, Synthesis of aluminosilicate zeolites and related silica-based materials. in Catalysis and Zeolites – Fundamentals and Applications, (Eds. J. Weitkamp and L. Puppe). Springer-Verlag, Berlin, p. 1, 1999. Search in Google Scholar

[69] E. M. Flanigen, B. M. Lok, R. L. Patton, S. T. Wilson, Aluminophosphate molecular sieves and the periodic table. in New Developments in Zeolite Science and Technology, Proc. 7th Int. Zeolite Conf., Tokyo, Japan, 1986. (Eds. Y. Murakami, A. Iijima, and J. W. Ward), Elsevier Science Publishers B. V., Amsterdam, The Netherlands, p. 103, 1986. Search in Google Scholar

[70] J. M. Bennett, W. J. Dytrych, J. J. Pluth, J. W. Richardson Jr., J. V. Smith, Structural features of aluminophosphate materials with AlP=1. Zeolites1986, 6, 349. Search in Google Scholar

[71] B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, E. M. Flanigen, Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J. Am. Chem. Soc.1984, 106, 6092. Search in Google Scholar

[72] P. Tian, Y. Wei, M. Ye., Z. Liu, Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal.2015, 5, 1922. Search in Google Scholar

[73] J. V. Smith, J. M. Bennett, Enumeration of 4-connected 3-dimensional nets and classification of framework silicates: the infinite set of ABC-6 nets; the Archimedean and σ-related nets. Am. Mineral.1981, 66, 777. Search in Google Scholar

[74] Y. Li, X. Li, J. Liu, F. Duan, J. Yu, In silico prediction and screening of modular crystal structures via a high-throughput genomic approach. Nature Commun.2015, 6, 8328. Search in Google Scholar

[75] H. F. Inman, E. L. Bradley Jr., The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. Commun. Statist. Theory Meth.1989, 18, 3851. Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2155).

Received: 2018-12-02
Accepted: 2019-02-25
Published Online: 2019-03-25
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston