Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 4, 2020

Crystal structure, Hirshfeld surfaces, topology, energy frameworks and dielectric studies of 1-(2-chlorophenyl)- 3,3-bis(methylthio)prop-2-en-1-one

Shankar Madan Kumar EMAIL logo , Byrapura Chandregowda Hemraju , Seegehalli Manjegowda Anil , Neralekere Kenchegowda Manjunatha , Menasagere Thammannagowda Swamy , Neratur Krishnappagowda Lokanath , Mohammed Al-Ghorbani , Nabil Al-Zaqri and Ali Alsalme

Abstract

The title compound 1-(2-chlorophenyl)-3,3-bis(methylthio)prop-2-en-1-one (1) have been synthesized, crystallized and characterized using FT-IR, 1H NMR, 13C NMR, LCMS and confirmed by single crystal X-ray diffraction method. In addition, the intermolecular interactions in the crystal structure are analyzed using Hirshfeld surfaces computational method. The (1) crystallizes in a monoclinic crystal system (space group P 21/c) with cell parameters a = 17.0132(9) Å, b = 8.6521(4) Å, c = 8.2815(7) Å, β = 95.512(6) ° and Z = 4. Intermolecular hydrogen bonds/interactions of the type C · · · H · · · O, C–H · · · S, C–H · · · Cg and C–Cl · · · Cg stabilize the crystal structure. The intermolecular interactions responsible for crystal packing are analyzed using Hirshfeld surfaces computational method, 2D finger print plots, electrostatic potential surfaces, toplogy surfaces [curvedness (C) and shape index (S), enrichment ratio (E) and 3D energy frameworks]. In addition the dielectric studies were performed for the title molecule. The crystal structure database (CSD) analysis was carried out for structural conformation and crystal packing confirmation. Overall structural studies confirmed that the intermolecular interactions of the type S · · · S chalocogen bonds are involved in crystal packing in addition to the C11–H11 · · · O1, C10–H10B · · · O1, two C10–H10 · · · S1, C4–H11 · · · Cg1 and C1–Cl1 · · · Cg1 interactions.


Corresponding author: Dr. Shankar Madan Kumar, IOE, Vijnana Bhavana, University of Mysore, Mysore 570006, India, E-mail:

Acknowledgements

Authors thanks IOE and DST-PURSE, Vijnana Bhavana, University of Mysore, Mysuru for X-ray crystallographic facility. Researchers Supporting Project number (RSP-2019/78), King Saud University, Riyadh, Saudi Arabia.

References

[1] N. Wang, P. Saidhareddy, X. Jiang. Construction of sulphur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep.2019, 36.Search in Google Scholar

[2] M. Feng, B. Tang, S. H. Liang, X. Jiang. Sulfur containing scaffolds in drugs: synthesis and application in Medicinal Chemistry. Curr. Top. Med. Chem.2016, 16, 1200.10.2174/1568026615666150915111741Search in Google Scholar

[3] Z. Qiao, X. Jiang. Recent developments in sulphur-carbon bond formation reaction involving thiosulphates. Org. Biomol. Chem.2017, 15, 1942.10.1039/C6OB02833KSearch in Google Scholar

[4] H. Liu, X. Jiang. Transfer of sulphur: From simple to diverse. Chem. Asian J.2013, 8, 2546.10.1002/asia.201300636Search in Google Scholar

[5] S. Goncalves, P. Hellier, M. Nicolas, A. Wagner, R. Baati. Diastereoselective formal total synthesis of (±)-triptolide via a novel cationic cyclization of 2-alkenyl-1,3-dithiolane. Chem. Commun.2010, 46, 5778.10.1039/c0cc00250jSearch in Google Scholar

[6] B. Zhou, X. Li, H. Feng, Y. Li. Efficient synthesis of the key intermideate triptophenolide methyl ether for the synthesis of (-)-triptolide. Tetrahedron. 2010, 66, 5396.10.1016/j.tet.2010.05.035Search in Google Scholar

[7] P. Cassoux. Molecular (super)conductors derived from bis-dithiolate metal complexes. Coordin Chem Rev. 185 1999, 185, 213.10.1016/S0010-8545(98)00272-0Search in Google Scholar

[8] M-K. Leung, T-Y. Luh. Product subclass 3: 1, 3-dithiolanes. in Science of Synthesis, (Ed. J. Otera) Stuttgart, G. Thieme Verlag AG, New York, p. 325. 2007.Search in Google Scholar

[9] M. Yokoyama, H. Togo, S. Kondo. Synthesis of hterocycles from Ketene dithioacetals. Sulf. Rep.1990, 10, 23.10.1080/01961779008048749Search in Google Scholar

[10] Q. Yang, P. Wu, J. Chen, Z. Yu. Iron-catalyzed alkylation of alpha-oxo ketene dithioacetals. Chem. Commun.2014, 50, 6337.10.1039/C4CC02264ESearch in Google Scholar

[11] Y. Li, X. Xu, J. Tan, C. Xia, D. Zhang, Q. Liu. Double Isocyanide cyclzation: a synthetic strategy for two-carbon-tethered pyrrole/oxazole pairs. J. Am. Chem. Soc.2011, 133, 1775.10.1021/ja110864tSearch in Google Scholar

[12] R. K. Dieter. Alpha-oxo ketene dithioacetals and related compounds: versatile three-carbon synthons. Tetrahedron1986, 42, 3029.10.1016/S0040-4020(01)87376-2Search in Google Scholar

[13] H. Junjappa, H. Ila, C. V. Asokan. Alpha-oxoketene-S-S-, N,S- and N,N-acetals: versatile intermediates in organic synthesis. Tetrahedron1990, 46, 5423.10.1016/S0040-4020(01)87748-6Search in Google Scholar

[14] L. Pan, X. Bi, Q. Liu, Recent developments of ketene dithioacetal chemistry. Chem. Soc. Rev.2013, 42, 1251.10.1039/C2CS35329FSearch in Google Scholar PubMed

[15] F. V. Gonzalez, A. Jain, S. Rodriguez, J. A. Saez, C. Vicent, G. Peris. Stereoisomerization of β-Hydroxy-α-sulfenyl-γ-butyrolactones controlled by two concomitant 1,4-Type nonbonded sulfur-oxygen interactions as analyzed by X-ray crystallography. Org. Chem.2010, 75, 5888.10.1021/jo1009454Search in Google Scholar PubMed

[16] A. S. Mikherdov, M. A. Kinzhalov, A. S. Novikov, V. P. Boyarskiy, I. A. Boyarskaya, D. V. Dar’in, G. L. Starova, V. Y. Kukushkin. Difference in energy between two distinct types of chalcogen bonds drives regioisomerization of binuclear (diaminocarbene) PdII complexes. J. Am. Chem. Soc.2016, 138, 14129.10.1021/jacs.6b09133Search in Google Scholar PubMed

[17] S. Menichetti, R. Amorati, V. Meoni, L. Tofani, G. Caminati, C. Viglianisi. Role of noncovalent sulfur···oxygen interactions in phenoxyl radical stabilization: synthesis of super tocopherol-like antioxidants. Org. Lett.2016, 18, 5464.10.1021/acs.orglett.6b02557Search in Google Scholar PubMed

[18] A. S. Mikherdov, M. A. Kinzhalov, A. S. Novikov, V. P. Boyarskiy, I. A. Boyarskaya, D. V. Dar’in, G. L. Starova, V. Y. Kukushkin. Difference in energy between two distinct types of chalcogen bonds drives regioisomerization of binuclear (diaminocarbene) PdII complexes. J. Am. Chem. Soc.2016, 138, 14129.10.1021/jacs.6b09133Search in Google Scholar

[19] K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva, A. J. L. Pombeiro. Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans.2017, 46, 10121.10.1039/C7DT01685ASearch in Google Scholar

[20] F. I. Guseinov, M. F. Pistsov Tetrel, E. M. Movsumzade, L. M. Kustov, V. A. Tafeenko, V. V. Chernyshev, A. Gurbanov, M. T. Mahmudov, A. J. L. Pombeiro. Chalcogen, and charge-assisted hydrogen bonds in 2-((2-carboxy-1-(substituted)-2-hydroxyethyl) thio) pyridin-1-ium chlorides. Crystals2017, 7, 327.10.3390/cryst7110327Search in Google Scholar

[21] S. Tsuzuki, H. Orita, N. Sato. Intermolecular interactions of oligothienoacenes: do S···S interactions positively contribute to crystal structures of sulfur-containing aromatic molecules. J. Chem. Phys.2016, 145, 174503.10.1063/1.4966580Search in Google Scholar PubMed

[22] Rigaku, Crystal Clear SM Expert 2.0 r15. Software for data collection and processing. Rigaku Corporation, Tokyo, Japan, 2011.Search in Google Scholar

[23] G. M. Sheldrick. Crystal Structure Refinement with SHELXL. Acta Crystallographica C.2015, C71, 3.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

[24] A. L. Spek. PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta. Cryst.1990, A46, 34.Search in Google Scholar

[25] I. J. Macrae Bruno, J. A. Chisholm, P. R. Edging-ton, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr.2008, 41, 466.10.1107/S0021889807067908Search in Google Scholar

[26] J. J. McKinnon, A. S. Mitchell, M. A. Spackman. Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem. – A Eur. J.1998, 4, 2136.10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-GSearch in Google Scholar

[27] M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman. Crystal Explorer 17. University of Western Australia. 2017, 17.Search in Google Scholar

[28] Y. H. Ma, S. W. Ge, W. Wang, B. W. Sun. Studies on the synthesis, structural characterization, Hirshfeld analysis and stability of apovincamine (API) and its co-crystal (terephthalic acid: Apovincamine=1:2). J. Mol. Struct.2015, 1097, 87.10.1016/j.molstruc.2015.05.014Search in Google Scholar

[29] S. Madan Kumar, B. C. Manjunath, G. S. Lingaraju, M. M. M. Abdoh, M. P. Sadashiva, N. K. Lokanath. A Hirshfeld surface analysis and crystal structure of 2’-[1-(2- fluoro – phenyl)-1H-tetrazol-5-]-4-methoxy-biphenyl-2carbaldehyde. Crystal. Struct. Theo. Appl.2013, 3, 124.Search in Google Scholar

[30] H. Yadav, N. Sinha, S. Goel, B. Singh, I Bidikin, A. Saini, K Gopalaiah, B. Kumar. Growth, crystal structure, Hirshfeld surface, optical, piezoelectric, dielectric and mechanical properties of bis(L-asparaginium hydrogensquarate) single crystal. Acta Cryst.2017, B73, 347.10.1107/S2052520617002906Search in Google Scholar

[31] C. Jelsch, K. Ejsmont, L. Huder. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ. 2014, 1, 119.10.1107/S2052252514003327Search in Google Scholar

[32] S. Madan Kumar, B. N. Lakshminarayana, S. Nagaraju, Sushma, S. Ananda, B. C. Manjunath, N. K. Lokanath, K. Byrappa. 3D energy frameworks of a potential nutraceutical. J. Mol. Struc. 1173 2018, 1173, 300.10.1016/j.molstruc.2018.06.083Search in Google Scholar

[33] S. Madan Kumar. 3D energy frameworks of dimethylbenzophenone tetramorphs. Heliyon.2019, 5, e01209.10.1016/j.heliyon.2019.e01209Search in Google Scholar

[34] S. Madan Kumar, A. K. Kudva, B. C. Manjunath, P. Naveen, T. Prashanth, S. A. Khanum, N. K. Lokanath, P. Nagendra. 3D energy framework of a benzophenone acidic dimer. Chem. Data Collect.2019, 19, 100168.10.1016/j.cdc.2018.11.010Search in Google Scholar

[35] M. J. Turner, S. Grabowsky, D. Jayatilaka, M. A. Spackman. Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals. J. Phys. Chem. Lett.2014, 5, 4249.10.1021/jz502271cSearch in Google Scholar

[36] C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman. Crystal explorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ. 2017, 4, 575.10.1107/S205225251700848XSearch in Google Scholar

[37] M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka, M. A. Spackman. Energy Frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Comm.2015, 51, 3735.10.1039/C4CC09074HSearch in Google Scholar

[38] H. Yadav, N. Sinha, S. Goel, A. Hussain, B. J. Kumar. Growth and structural and physical properties of diisopropylammonium bromide molecular single crystals. Appl. Cryst.2016, 49, 2053.10.1107/S1600576716014552Search in Google Scholar

[39] G.-N. Yu, J.-H. Xia, Z.-H. Xu, L.-B. Wang, C.-Y. Yu. 3,3-Bis(mrthylsulfanyl)-1-(4-nitophenyl)-prop-2-en-1-one. Acta Cryst. 2013, E69, o1036.Search in Google Scholar

[40] I. P. Mellor, S. C. Nyburg. The crystal and molecular structures of some molecules showing S···O interaction. II. 3-phenyl-1-propene-1,3-dione-1-(dimethyl mercaptole). Acta Cryst.1971, B27, 1954.10.1107/S0567740871005156Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2019-0065).


Received: 2019-11-21
Accepted: 2020-01-17
Published Online: 2020-02-04
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/zkri-2019-0065/html
Scroll Up Arrow