Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 29, 2020

High temperature tetragonal crystal structure of UPt2Si2

  • Karel Prokeš EMAIL logo , Oscar Fabelo , Stefan Süllow , Jooseop Lee and John A. Mydosh


High temperature crystal structure of UPt2Si2 determined using single-crystal neutron diffraction at 400 K is reported. It is found that the crystal structure remains of the primitive tetragonal CaBe2Ge2 type with the space group P4/nmm. Anisotropic displacement factors of the Pt atoms at the 2a (3/4 1/4 0) and Si atoms at the 2c (1/4 1/4 z) Wyckoff sites are found to be anomalously large.

Corresponding author: Karel Prokeš, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109Berlin, Germany, E-mail:


We would like to thank ILL for providing us with the experimental beam time within the director’s discretionary time scheme.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Sechovský, V., Havela, L. Magnetism of ternary intermetallic compounds of uranium. In Handbook of Magnetic Materials; Buschow, K. H. J. Ed. Elsevier Science B.V.: North Holland, Amsterdam, Vol. 11, 1998; pp. 1–289.10.1016/S1567-2719(98)11005-3Search in Google Scholar

2. Hoffmann, R., Zheng, C. Making and breaking bonds in the solid state: the thorium chromium silicide (ThCr2Si2) structure, J. Phys. Chem. 1985, 89, 4175; in Google Scholar

3. Palstra, T. T. M., Menovsky, A. A., van den Berg, J., Dirkmaat, A. J., Kes, P. H., Nieuwenhuys, G. J., Mydosh, J. A. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2. Phys. Rev. Lett. 1985, 55, 2727; in Google Scholar

4. Hasselbach, K., Lejay, P., Flouquet, J. A single superconducting transition in URu2Si2 – comparison with UPt. Phys. Lett. A 1991, 156, 313; in Google Scholar

5. Mydosh, J. A., Oppeneer, P. M. Hidden order behaviour in URu2Si2 (A critical review of the status of hidden order in 2014). Philos. Mag. 2014, 94, 3642; in Google Scholar

6. Ptasiewicz-Bak, H., Leciejewicz, J., Zygmunt, A. Neutron-diffraction study of the crystal structure and magnetic properties of uranium ternary compounds UPt2Si2 and URh2Ge2. Solid State Commun. 1985, 55, 601; in Google Scholar

7. Steeman, R. A., Frikkee, E., van Dijk, C., Nieuwenhuys, G. J., Menovsky, A. A. Neutron scattering experiments on UPt2Si2. J. Magn. Magn Mater. 1988, 76–77, 435; in Google Scholar

8. Bleckmann, M., Otop, A., Süllow, S., Feyerherm, R., Klenke, J., Loose, A., Hendrikx, R. W. A., Mydosh, J. A., Amitsuka, H. Structural properties, magnetic order and electronic transport in single crystalline UPt2Si2. J. Magn. Magn Mater. 2010, 322, 2447; in Google Scholar

9. Amitsuka, H., Sakakibara, T., Sugiyama, K., Ikeda, T., Miyako, Y., Date, M., Yamagishi, A High-field mmagnetism of UPt2Si2 single crystals. Phys. B Condens. Matter 1992, 177, 173; in Google Scholar

10. Süllow, S., Otop, A., Loose, A., Klenke, J, Prokhnenko, O., Feyerherm, R., Hendrikx, R. W. A., Mydosh, J. A., Amitsuka, H. Electronic localization and two-dimensional metallic state in UPt2Si2. J. Phys. Soc. Jpn. 2008, 77, 024708; in Google Scholar

11. Grachtrup, D. S., Steinki, N., Süllow, S., Cakir, Z., Zwicknagl, G., Krupko, Y., Sheikin, I., Jaime, M., Mydosh, J. A. Magnetic phase diagram and electronic structure of UPt2Si2 at high magnetic fields: A possible fieldinduced Lifshitz transition. Phys. Rev. B 2017, 95, 134422; in Google Scholar

12. Otop, A., Litterst, F. J., Hendrikx, R. W. A., Mydosh, J. A., Süllow, S., Magnetic irreversibility in single crystalline UPt2Si2. J. Appl. Phys. 2004, 95, 6702; in Google Scholar

13. Menovsky, A. A., Moleman, A. C., Snel, C. E., Gortenmulder, T. J., Tan, H. J., Palstra, T. T. M. Crystal growth and characterization of MT2Si2 ternary intermetallics (M= U, RE and T= 3d, 4d, 5d transition metals). J. Cryst. Growth 1986, 79, 316; in Google Scholar

14. Prokeš, K., Yokaichiya, F. The 2-Axis diffractometer at BER II. JLSRF 2017, 3, A104; in Google Scholar

15. Roisnel, T., Rodríguez-Carvajal, J. WinPLOTR: a windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 378, 118; in Google Scholar

16. Sears, V. F. Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26; in Google Scholar

17. Momma, K., Izumi, F. VESTA 3 for three-dimensional visualization ofcrystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272; in Google Scholar

18. Prokeš, K., Fabelo Rosa, O. R., Lee, J., Mydosh, J. A., Süllow, S. 2018; in Google Scholar

19. Lee, J., Prokeš, K., Park, S., Zaliznyak, I., Dissanayake, S., Matsuda, M., Frontzek, M., Stoupin, S., Park, C., Mydosh, J. A., Granroth, G. E., Jacob, P. C. 2020, to be published.Search in Google Scholar

20. Imre, A., Hellmann, A., Wenski, G., Graf, J., Johrendt, D., Mewis, A. Modulated crystal structures and phase transitions - the compounds SrPt2As2 and EuPt2As2. Z. Anorg. Allg. Chem. 2007, 633, 2037.10.1002/chin.200746023Search in Google Scholar

21. Falkowski, M., Doležal, P., Andreev, A. V., Duverger-Nédellec, E., Havela, L. Structural, thermodynamic, thermal, and electron transport properties of single-crystalline LaPt2Si2. Phys. Rev. B 2019, 100, 064103; in Google Scholar

22. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

Received: 2020-02-26
Accepted: 2020-03-31
Published Online: 2020-06-29
Published in Print: 2020-07-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.2.2024 from
Scroll to top button