Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 1, 2020

On the nature of the phase transitions of aluminosilicate perrhenate sodalite

Hilke Petersen ORCID logo , Lars Robben ORCID logo EMAIL logo and Thorsten M. Gesing ORCID logo


The temperature-dependent structure-property relationships of the aluminosilicate perrhenate sodalite |Na8(ReO4)2|[AlSiO4]6 (ReO4-SOD) were analysed via powder X-ray diffraction (PXRD), Raman spectroscopy and heat capacity measurements. ReO4-SOD shows two phase transitions in the investigated temperature range (13 K < T < 1480 K). The first one at 218.6(1) K is correlated to the transition of dynamically ordered P4¯3n (> 218.6(1 K) to a statically disordered (<218.6(1) K) SOD template in P4¯3n. The loss of the dynamics of the template anion during cooling causes an increase of disorder, indicated by an unusual intensity decrease of the 011-reflection and an increase of the Re-O2 bond length with decreasing temperature. Additionally, Raman spectroscopy shows a distortion of the ReO4 anion. Upon heating the thermal expansion of the sodalite cage originated in the tilt-mechanism causes the second phase transition at 442(1) K resulting in a symmetry-increase from P4¯3n to Pm3¯n, the structure with the sodalites full framework expansion. Noteworthy is the high decomposition temperature of 1320(10) K.

Corresponding author: Lars Robben, University of Bremen, Institute of Inorganic Chemistry and Crystallography, Leobener Str. 7, 28359 Bremen, Germany; University of Bremen, MAPEX Center for Materials and Processes, Bibliotheksstraße 1, 28359 Bremen, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: INST 144/435-1 FUGG


The authors express their gratitude to the Deutsche Forschungsgemeinschaft (DFG) for funding the low-temperature X-ray diffraction equipment (StadiMP) with the Art. 91b GG grant INST 144/435-1 FUGG.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Deutsche Forschungsgemeinschaft (DFG).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Mattigod, S. V., Peter McGrail, B., McCready, D. E., Wang, L., Parker, K. E., Young, J. S. Microporous Mesoporous Mater. 2006, 91, 139–144; in Google Scholar

2. Dickson, J. O., Harsh, J. B., Flury, M., Lukens, W. W., Pierce, E. M. Environ. Sci. Technol. 2014, 48, 12851–12857; in Google Scholar PubMed

3. Banerjee, D., Elsaidi, S. K., Aguila, B., Li, B., Kim, D., Schweiger, M. J., Kruger, A. A., Doonan, C. J., Ma, S., Thallapally, P. K. Chem. Eur. J. 2016, 22, 17581–17584; in Google Scholar PubMed

4. Pierce, E. M., Lilova, K., Missimer, D. M., Lukens, W. W., Wu, L., Fitts, J., Rawn, C., Huq, A., Leonard, D. N., Eskelsen, J. R., Woodfield, B. F., Jantzen, C. M., Navrotsky, A. Environ. Sci. Technol. 2017, 51, 997–1006; in Google Scholar PubMed

5. Lukens, W. W., Magnani, N., Tyliszczak, T., Pearce, C.I., Shuh, D. K. Environ. Sci. Technol. 2016, 50, 13160–13168; in Google Scholar PubMed

6. Dickson, J. O., Harsh, J. B., Flury, M., Pierce, E. M. Microporous Mesoporous Mater. 2015, 214, 115–120; in Google Scholar

7. Hamilton, B. H., Wagler, T. A., Espe, M. P., Ziegler, C. J. Inorg. Chem. 2005, 44, 4891–4893; in Google Scholar PubMed

8. Pierce, E. M., Lukens, W. W., Fitts, J. P., Jantzen, C. M., Tang, G. Appl. Geochem. 2014, 42, 47–59; in Google Scholar

9. Dickson, J. O., Harsh, J. B., Lukens, W. W., Pierce, E. M. Chem. Geol. 2015, 395, 138–143; in Google Scholar

10. Jafar, M., Phapale, S. B., Mandal, B. P., Mishra, R., Tyagi, A. K. Inorg. Chem. 2015, 54, 9447–9457; in Google Scholar PubMed

11. Kaushik, C. P. Procedia Mater. Sci. 2014, 7, 16–22; in Google Scholar

12. Hartmann, T., Alaniz, A. J., Antonio, D. J. Procedia Chem. 2012, 7, 622–628; in Google Scholar

13. Caurant, D. Оптика и Спектроскопия 2014, 116, 721–731; in Google Scholar

14. Harrison, M. T. Procedia Mater. Sci. 2014, 7, 10–15; in Google Scholar

15. Bingham, P. A., Vaishnav, S., Forder, S. D., Scrimshire, A., Jaganathan, B., Rohini, J, Marra, J. C., Fox, K. M, Pierce, E. M, Workman, P., Viennad, J. D. J. Alloys Compd. 2017, 695, 656–667; in Google Scholar

16. Thien, B. M. J., Godon, N., Ballestero, A., Gin, S, Ayral, A. J. Nucl. Mater. 2012, 427, 297–310; in Google Scholar

17. Rébiscoul, D., Tormos, V., Godon, N., Mestre, J. P., Cabie, M., Amiard, G., Foy, E., Frugier, P., Gin, S. Appl. Geochem. 2015, 58, 26–37; in Google Scholar

18. Banerjee, D., Xu, W., Nie, Z., Johnson, L. E. V., Coghlan, C., Sushko, M. L., Kim, D., Schweiger, M. J., Kruger, A. A, Doonan, C. J., Thallapally, P. K. Inorg. Chem. 2016, 55, 8241–8243; in Google Scholar PubMed

19. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; in Google Scholar

20. Petersen, H., Robben, L., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2017, 242, 144–151; in Google Scholar

21. Gesing, T. M., Buhl, J.-C. Synthesis (Stuttg). 2003, 218, 2003–2003; in Google Scholar

22. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; in Google Scholar

23. Taylor, D., Henderson, C. M. B. Phys. Chem Miner. 1978, 2, 325–336; in Google Scholar

24. Weller, M.T. J. Chem. Soc. Dalton Trans. 2000, 0, 4227–4240; in Google Scholar

25. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2003, 218, 332–344; in Google Scholar

26. Depmeier, W. Acta Crystallogr. B 1984, B40, 185–191; in Google Scholar

27. Deng, Y., Flury, M., Harsh, J. B., Felmy, A. R, Qafoku, O. Appl. Geochem. 2006, 21, 2049–2063; in Google Scholar

28. James, J. D., Spittle, J. A, Brown, S. G. R., Evans, R. W. Meas. Sci. Technol. 2001, 12, 1–15; in Google Scholar

29. Robben, L. Z. Kristallogr. 2017, 232, 267–277; in Google Scholar

30. Schawe, J. E. K., Hütter, T., Heitz, C., Alig, I., Lellinger, D. Thermochim. Acta 2006, 446, 147–155; in Google Scholar

31. Busey, R. H., Keller, O. L. J. Chem. Phys. 1964, 41, 215–225; in Google Scholar

32. Secordel, X., Berrier, E., Capron, M., Cristol, S., Paul, J. F., Fournier, M., Payen, E. Catal. Today 2010, 155, 177–183; in Google Scholar

33. Schliesser, J., Lilova, K., Pierce, E. M., Wu, L, Missimer, D. M., Woodfield, B. F., Navrotsky, A. J. Chem. Thermodyn. 2017, 114, 14–24; in Google Scholar

34. Barrer, R. M., Cole, J. F. J. Chem. Soc. 1970, 1516–1523; in Google Scholar

35. Weller, M. T., Haworth, K. E. J. Chem. Soc., Chem. Commun. 1991, 734–735; in Google Scholar

36. Buhl, J.-C., Gesing, T. M., Rüscher, C. Microporous Mesoporous Mater. 2005, 80, 57–63; in Google Scholar

37. Buhl, J.-C., Luger, S. Thermochim. Acta 1990, 168, 253–259; in Google Scholar

38. Gesing, T. M. Z. Kristallogr. 2007, 222, 289–296; in Google Scholar

39. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; in Google Scholar

40. Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2003, 218, 275; in Google Scholar

41. Buhl, J.-C., Gesing, T. M., Kerkamm, I., Gurris, C. Microporous Mesoporous Mater. 2003, 65, 145–153; in Google Scholar

42. Buhl, J.-C., Gesing, T. M., Gurris, C. Microporous Mesoporous Mater. 2001, 50, 25–32; in Google Scholar

43. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2003, 218, 332–344; in Google Scholar

44. Pope, S. J. A., West, Y. D. Spectrochim. Acta Part A Mol. Spectrosc. 1995, 51, 2027–2037; in Google Scholar

45. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part A: Theory and Applications in Inorganic Chemistry, 6th ed.; Wiley: Hoboken, 2009.Search in Google Scholar

Supplementary material

The online version of this article offers supplementary material (

Received: 2020-05-03
Accepted: 2020-05-20
Published Online: 2020-07-01
Published in Print: 2020-07-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.1.2023 from
Scroll Up Arrow