Abstract
The temperature-dependent structure-property relationships of the aluminosilicate perrhenate sodalite |Na8(ReO4)2|[AlSiO4]6 (ReO4-SOD) were analysed via powder X-ray diffraction (PXRD), Raman spectroscopy and heat capacity measurements. ReO4-SOD shows two phase transitions in the investigated temperature range (13 K < T < 1480 K). The first one at 218.6(1) K is correlated to the transition of dynamically ordered
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: INST 144/435-1 FUGG
Acknowledgment
The authors express their gratitude to the Deutsche Forschungsgemeinschaft (DFG) for funding the low-temperature X-ray diffraction equipment (StadiMP) with the Art. 91b GG grant INST 144/435-1 FUGG.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This research was funded by Deutsche Forschungsgemeinschaft (DFG).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Mattigod, S. V., Peter McGrail, B., McCready, D. E., Wang, L., Parker, K. E., Young, J. S. Microporous Mesoporous Mater. 2006, 91, 139–144; https://doi.org/10.1016/j.micromeso.2005.11.025.Search in Google Scholar
2. Dickson, J. O., Harsh, J. B., Flury, M., Lukens, W. W., Pierce, E. M. Environ. Sci. Technol. 2014, 48, 12851–12857; https://doi.org/10.1021/es503156v.Search in Google Scholar PubMed
3. Banerjee, D., Elsaidi, S. K., Aguila, B., Li, B., Kim, D., Schweiger, M. J., Kruger, A. A., Doonan, C. J., Ma, S., Thallapally, P. K. Chem. Eur. J. 2016, 22, 17581–17584; https://doi.org/10.1002/chem.201603908.Search in Google Scholar PubMed
4. Pierce, E. M., Lilova, K., Missimer, D. M., Lukens, W. W., Wu, L., Fitts, J., Rawn, C., Huq, A., Leonard, D. N., Eskelsen, J. R., Woodfield, B. F., Jantzen, C. M., Navrotsky, A. Environ. Sci. Technol. 2017, 51, 997–1006; https://doi.org/10.1021/acs.est.6b01879.Search in Google Scholar PubMed
5. Lukens, W. W., Magnani, N., Tyliszczak, T., Pearce, C.I., Shuh, D. K. Environ. Sci. Technol. 2016, 50, 13160–13168; https://doi.org/10.1021/acs.est.6b04209.Search in Google Scholar PubMed
6. Dickson, J. O., Harsh, J. B., Flury, M., Pierce, E. M. Microporous Mesoporous Mater. 2015, 214, 115–120; https://doi.org/10.1016/j.micromeso.2015.05.011.Search in Google Scholar
7. Hamilton, B. H., Wagler, T. A., Espe, M. P., Ziegler, C. J. Inorg. Chem. 2005, 44, 4891–4893; https://doi.org/10.1021/ic050213v.Search in Google Scholar PubMed
8. Pierce, E. M., Lukens, W. W., Fitts, J. P., Jantzen, C. M., Tang, G. Appl. Geochem. 2014, 42, 47–59; https://doi.org/10.1016/j.apgeochem.2013.12.017.Search in Google Scholar
9. Dickson, J. O., Harsh, J. B., Lukens, W. W., Pierce, E. M. Chem. Geol. 2015, 395, 138–143; https://doi.org/10.1016/j.chemgeo.2014.12.009.Search in Google Scholar
10. Jafar, M., Phapale, S. B., Mandal, B. P., Mishra, R., Tyagi, A. K. Inorg. Chem. 2015, 54, 9447–9457; https://doi.org/10.1021/acs.inorgchem.5b01300.Search in Google Scholar PubMed
11. Kaushik, C. P. Procedia Mater. Sci. 2014, 7, 16–22; https://doi.org/10.1016/j.mspro.2014.10.004.Search in Google Scholar
12. Hartmann, T., Alaniz, A. J., Antonio, D. J. Procedia Chem. 2012, 7, 622–628; https://doi.org/10.1016/j.proche.2012.10.095.Search in Google Scholar
13. Caurant, D. Оптика и Спектроскопия 2014, 116, 721–731; https://doi.org/10.7868/s0030403414050067.Search in Google Scholar
14. Harrison, M. T. Procedia Mater. Sci. 2014, 7, 10–15; https://doi.org/10.1016/j.mspro.2014.10.003.Search in Google Scholar
15. Bingham, P. A., Vaishnav, S., Forder, S. D., Scrimshire, A., Jaganathan, B., Rohini, J, Marra, J. C., Fox, K. M, Pierce, E. M, Workman, P., Viennad, J. D. J. Alloys Compd. 2017, 695, 656–667; https://doi.org/10.1016/j.jallcom.2016.11.110.Search in Google Scholar
16. Thien, B. M. J., Godon, N., Ballestero, A., Gin, S, Ayral, A. J. Nucl. Mater. 2012, 427, 297–310; https://doi.org/10.1016/j.jnucmat.2012.05.025.Search in Google Scholar
17. Rébiscoul, D., Tormos, V., Godon, N., Mestre, J. P., Cabie, M., Amiard, G., Foy, E., Frugier, P., Gin, S. Appl. Geochem. 2015, 58, 26–37; https://doi.org/10.1016/j.apgeochem.2015.02.018.Search in Google Scholar
18. Banerjee, D., Xu, W., Nie, Z., Johnson, L. E. V., Coghlan, C., Sushko, M. L., Kim, D., Schweiger, M. J., Kruger, A. A, Doonan, C. J., Thallapally, P. K. Inorg. Chem. 2016, 55, 8241–8243; https://doi.org/10.1021/acs.inorgchem.6b01004.Search in Google Scholar PubMed
19. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; https://doi.org/10.1524/zkri.2009.1147.Search in Google Scholar
20. Petersen, H., Robben, L., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2017, 242, 144–151; https://doi.org/10.1016/j.micromeso.2017.01.019.Search in Google Scholar
21. Gesing, T. M., Buhl, J.-C. Synthesis (Stuttg). 2003, 218, 2003–2003; https://doi.org/10.1524/ncrs.2003.218.jg.297.Search in Google Scholar
22. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; https://doi.org/10.1524/zkri.2007.222.7.341.Search in Google Scholar
23. Taylor, D., Henderson, C. M. B. Phys. Chem Miner. 1978, 2, 325–336; https://doi.org/10.1007/bf00307575.Search in Google Scholar
24. Weller, M.T. J. Chem. Soc. Dalton Trans. 2000, 0, 4227–4240; https://doi.org/10.1039/b003800h.Search in Google Scholar
25. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2003, 218, 332–344; https://doi.org/10.1524/zkri.218.5.332.20731.Search in Google Scholar
26. Depmeier, W. Acta Crystallogr. B 1984, B40, 185–191; https://doi.org/10.1107/s0108768184001956.Search in Google Scholar
27. Deng, Y., Flury, M., Harsh, J. B., Felmy, A. R, Qafoku, O. Appl. Geochem. 2006, 21, 2049–2063; https://doi.org/10.1016/j.apgeochem.2006.06.019.Search in Google Scholar
28. James, J. D., Spittle, J. A, Brown, S. G. R., Evans, R. W. Meas. Sci. Technol. 2001, 12, 1–15; https://doi.org/10.1088/0957-0233/12/3/201.Search in Google Scholar
29. Robben, L. Z. Kristallogr. 2017, 232, 267–277; https://doi.org/10.1515/zkri-2016-2000.Search in Google Scholar
30. Schawe, J. E. K., Hütter, T., Heitz, C., Alig, I., Lellinger, D. Thermochim. Acta 2006, 446, 147–155; https://doi.org/10.1016/j.tca.2006.01.031.Search in Google Scholar
31. Busey, R. H., Keller, O. L. J. Chem. Phys. 1964, 41, 215–225; https://doi.org/10.1063/1.1725625.Search in Google Scholar
32. Secordel, X., Berrier, E., Capron, M., Cristol, S., Paul, J. F., Fournier, M., Payen, E. Catal. Today 2010, 155, 177–183; https://doi.org/10.1016/j.cattod.2010.01.003.Search in Google Scholar
33. Schliesser, J., Lilova, K., Pierce, E. M., Wu, L, Missimer, D. M., Woodfield, B. F., Navrotsky, A. J. Chem. Thermodyn. 2017, 114, 14–24; https://doi.org/10.1016/j.jct.2017.05.035.Search in Google Scholar
34. Barrer, R. M., Cole, J. F. J. Chem. Soc. 1970, 1516–1523; https://doi.org/10.1039/j19700001516.Search in Google Scholar
35. Weller, M. T., Haworth, K. E. J. Chem. Soc., Chem. Commun. 1991, 734–735; https://doi.org/10.1039/c39910000734.Search in Google Scholar
36. Buhl, J.-C., Gesing, T. M., Rüscher, C. Microporous Mesoporous Mater. 2005, 80, 57–63; https://doi.org/10.1016/j.micromeso.2004.11.022.Search in Google Scholar
37. Buhl, J.-C., Luger, S. Thermochim. Acta 1990, 168, 253–259; https://doi.org/10.1016/0040-6031(90)80644-e.Search in Google Scholar
38. Gesing, T. M. Z. Kristallogr. 2007, 222, 289–296; https://doi.org/10.1524/zkri.2007.222.6.289.Search in Google Scholar
39. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; https://doi.org/10.1524/zkri.2007.222.7.341.Search in Google Scholar
40. Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2003, 218, 275; https://doi.org/10.1524/ncrs.2003.218.jg.297.Search in Google Scholar
41. Buhl, J.-C., Gesing, T. M., Kerkamm, I., Gurris, C. Microporous Mesoporous Mater. 2003, 65, 145–153; https://doi.org/10.1016/j.micromeso.2003.07.004.Search in Google Scholar
42. Buhl, J.-C., Gesing, T. M., Gurris, C. Microporous Mesoporous Mater. 2001, 50, 25–32; https://doi.org/10.1016/s1387-1811(01)00430-9.Search in Google Scholar
43. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2003, 218, 332–344; https://doi.org/10.1524/zkri.218.5.332.20731.Search in Google Scholar
44. Pope, S. J. A., West, Y. D. Spectrochim. Acta Part A Mol. Spectrosc. 1995, 51, 2027–2037; https://doi.org/10.1016/0584-8539(95)01509-1.Search in Google Scholar
45. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part A: Theory and Applications in Inorganic Chemistry, 6th ed.; Wiley: Hoboken, 2009.Search in Google Scholar
Supplementary material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0027).
© 2020 Walter de Gruyter GmbH, Berlin/Boston