Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 1, 2020

On the nature of the phase transitions of aluminosilicate perrhenate sodalite

Hilke Petersen ORCID logo , Lars Robben ORCID logo EMAIL logo and Thorsten M. Gesing ORCID logo

Abstract

The temperature-dependent structure-property relationships of the aluminosilicate perrhenate sodalite |Na8(ReO4)2|[AlSiO4]6 (ReO4-SOD) were analysed via powder X-ray diffraction (PXRD), Raman spectroscopy and heat capacity measurements. ReO4-SOD shows two phase transitions in the investigated temperature range (13 K < T < 1480 K). The first one at 218.6(1) K is correlated to the transition of dynamically ordered P4¯3n (> 218.6(1 K) to a statically disordered (<218.6(1) K) SOD template in P4¯3n. The loss of the dynamics of the template anion during cooling causes an increase of disorder, indicated by an unusual intensity decrease of the 011-reflection and an increase of the Re-O2 bond length with decreasing temperature. Additionally, Raman spectroscopy shows a distortion of the ReO4 anion. Upon heating the thermal expansion of the sodalite cage originated in the tilt-mechanism causes the second phase transition at 442(1) K resulting in a symmetry-increase from P4¯3n to Pm3¯n, the structure with the sodalites full framework expansion. Noteworthy is the high decomposition temperature of 1320(10) K.


Corresponding author: Lars Robben, University of Bremen, Institute of Inorganic Chemistry and Crystallography, Leobener Str. 7, 28359 Bremen, Germany; University of Bremen, MAPEX Center for Materials and Processes, Bibliotheksstraße 1, 28359 Bremen, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: INST 144/435-1 FUGG

Acknowledgment

The authors express their gratitude to the Deutsche Forschungsgemeinschaft (DFG) for funding the low-temperature X-ray diffraction equipment (StadiMP) with the Art. 91b GG grant INST 144/435-1 FUGG.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Deutsche Forschungsgemeinschaft (DFG).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Mattigod, S. V., Peter McGrail, B., McCready, D. E., Wang, L., Parker, K. E., Young, J. S. Microporous Mesoporous Mater. 2006, 91, 139–144; https://doi.org/10.1016/j.micromeso.2005.11.025.Search in Google Scholar

2. Dickson, J. O., Harsh, J. B., Flury, M., Lukens, W. W., Pierce, E. M. Environ. Sci. Technol. 2014, 48, 12851–12857; https://doi.org/10.1021/es503156v.Search in Google Scholar PubMed

3. Banerjee, D., Elsaidi, S. K., Aguila, B., Li, B., Kim, D., Schweiger, M. J., Kruger, A. A., Doonan, C. J., Ma, S., Thallapally, P. K. Chem. Eur. J. 2016, 22, 17581–17584; https://doi.org/10.1002/chem.201603908.Search in Google Scholar PubMed

4. Pierce, E. M., Lilova, K., Missimer, D. M., Lukens, W. W., Wu, L., Fitts, J., Rawn, C., Huq, A., Leonard, D. N., Eskelsen, J. R., Woodfield, B. F., Jantzen, C. M., Navrotsky, A. Environ. Sci. Technol. 2017, 51, 997–1006; https://doi.org/10.1021/acs.est.6b01879.Search in Google Scholar PubMed

5. Lukens, W. W., Magnani, N., Tyliszczak, T., Pearce, C.I., Shuh, D. K. Environ. Sci. Technol. 2016, 50, 13160–13168; https://doi.org/10.1021/acs.est.6b04209.Search in Google Scholar PubMed

6. Dickson, J. O., Harsh, J. B., Flury, M., Pierce, E. M. Microporous Mesoporous Mater. 2015, 214, 115–120; https://doi.org/10.1016/j.micromeso.2015.05.011.Search in Google Scholar

7. Hamilton, B. H., Wagler, T. A., Espe, M. P., Ziegler, C. J. Inorg. Chem. 2005, 44, 4891–4893; https://doi.org/10.1021/ic050213v.Search in Google Scholar PubMed

8. Pierce, E. M., Lukens, W. W., Fitts, J. P., Jantzen, C. M., Tang, G. Appl. Geochem. 2014, 42, 47–59; https://doi.org/10.1016/j.apgeochem.2013.12.017.Search in Google Scholar

9. Dickson, J. O., Harsh, J. B., Lukens, W. W., Pierce, E. M. Chem. Geol. 2015, 395, 138–143; https://doi.org/10.1016/j.chemgeo.2014.12.009.Search in Google Scholar

10. Jafar, M., Phapale, S. B., Mandal, B. P., Mishra, R., Tyagi, A. K. Inorg. Chem. 2015, 54, 9447–9457; https://doi.org/10.1021/acs.inorgchem.5b01300.Search in Google Scholar PubMed

11. Kaushik, C. P. Procedia Mater. Sci. 2014, 7, 16–22; https://doi.org/10.1016/j.mspro.2014.10.004.Search in Google Scholar

12. Hartmann, T., Alaniz, A. J., Antonio, D. J. Procedia Chem. 2012, 7, 622–628; https://doi.org/10.1016/j.proche.2012.10.095.Search in Google Scholar

13. Caurant, D. Оптика и Спектроскопия 2014, 116, 721–731; https://doi.org/10.7868/s0030403414050067.Search in Google Scholar

14. Harrison, M. T. Procedia Mater. Sci. 2014, 7, 10–15; https://doi.org/10.1016/j.mspro.2014.10.003.Search in Google Scholar

15. Bingham, P. A., Vaishnav, S., Forder, S. D., Scrimshire, A., Jaganathan, B., Rohini, J, Marra, J. C., Fox, K. M, Pierce, E. M, Workman, P., Viennad, J. D. J. Alloys Compd. 2017, 695, 656–667; https://doi.org/10.1016/j.jallcom.2016.11.110.Search in Google Scholar

16. Thien, B. M. J., Godon, N., Ballestero, A., Gin, S, Ayral, A. J. Nucl. Mater. 2012, 427, 297–310; https://doi.org/10.1016/j.jnucmat.2012.05.025.Search in Google Scholar

17. Rébiscoul, D., Tormos, V., Godon, N., Mestre, J. P., Cabie, M., Amiard, G., Foy, E., Frugier, P., Gin, S. Appl. Geochem. 2015, 58, 26–37; https://doi.org/10.1016/j.apgeochem.2015.02.018.Search in Google Scholar

18. Banerjee, D., Xu, W., Nie, Z., Johnson, L. E. V., Coghlan, C., Sushko, M. L., Kim, D., Schweiger, M. J., Kruger, A. A, Doonan, C. J., Thallapally, P. K. Inorg. Chem. 2016, 55, 8241–8243; https://doi.org/10.1021/acs.inorgchem.6b01004.Search in Google Scholar PubMed

19. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; https://doi.org/10.1524/zkri.2009.1147.Search in Google Scholar

20. Petersen, H., Robben, L., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2017, 242, 144–151; https://doi.org/10.1016/j.micromeso.2017.01.019.Search in Google Scholar

21. Gesing, T. M., Buhl, J.-C. Synthesis (Stuttg). 2003, 218, 2003–2003; https://doi.org/10.1524/ncrs.2003.218.jg.297.Search in Google Scholar

22. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; https://doi.org/10.1524/zkri.2007.222.7.341.Search in Google Scholar

23. Taylor, D., Henderson, C. M. B. Phys. Chem Miner. 1978, 2, 325–336; https://doi.org/10.1007/bf00307575.Search in Google Scholar

24. Weller, M.T. J. Chem. Soc. Dalton Trans. 2000, 0, 4227–4240; https://doi.org/10.1039/b003800h.Search in Google Scholar

25. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2003, 218, 332–344; https://doi.org/10.1524/zkri.218.5.332.20731.Search in Google Scholar

26. Depmeier, W. Acta Crystallogr. B 1984, B40, 185–191; https://doi.org/10.1107/s0108768184001956.Search in Google Scholar

27. Deng, Y., Flury, M., Harsh, J. B., Felmy, A. R, Qafoku, O. Appl. Geochem. 2006, 21, 2049–2063; https://doi.org/10.1016/j.apgeochem.2006.06.019.Search in Google Scholar

28. James, J. D., Spittle, J. A, Brown, S. G. R., Evans, R. W. Meas. Sci. Technol. 2001, 12, 1–15; https://doi.org/10.1088/0957-0233/12/3/201.Search in Google Scholar

29. Robben, L. Z. Kristallogr. 2017, 232, 267–277; https://doi.org/10.1515/zkri-2016-2000.Search in Google Scholar

30. Schawe, J. E. K., Hütter, T., Heitz, C., Alig, I., Lellinger, D. Thermochim. Acta 2006, 446, 147–155; https://doi.org/10.1016/j.tca.2006.01.031.Search in Google Scholar

31. Busey, R. H., Keller, O. L. J. Chem. Phys. 1964, 41, 215–225; https://doi.org/10.1063/1.1725625.Search in Google Scholar

32. Secordel, X., Berrier, E., Capron, M., Cristol, S., Paul, J. F., Fournier, M., Payen, E. Catal. Today 2010, 155, 177–183; https://doi.org/10.1016/j.cattod.2010.01.003.Search in Google Scholar

33. Schliesser, J., Lilova, K., Pierce, E. M., Wu, L, Missimer, D. M., Woodfield, B. F., Navrotsky, A. J. Chem. Thermodyn. 2017, 114, 14–24; https://doi.org/10.1016/j.jct.2017.05.035.Search in Google Scholar

34. Barrer, R. M., Cole, J. F. J. Chem. Soc. 1970, 1516–1523; https://doi.org/10.1039/j19700001516.Search in Google Scholar

35. Weller, M. T., Haworth, K. E. J. Chem. Soc., Chem. Commun. 1991, 734–735; https://doi.org/10.1039/c39910000734.Search in Google Scholar

36. Buhl, J.-C., Gesing, T. M., Rüscher, C. Microporous Mesoporous Mater. 2005, 80, 57–63; https://doi.org/10.1016/j.micromeso.2004.11.022.Search in Google Scholar

37. Buhl, J.-C., Luger, S. Thermochim. Acta 1990, 168, 253–259; https://doi.org/10.1016/0040-6031(90)80644-e.Search in Google Scholar

38. Gesing, T. M. Z. Kristallogr. 2007, 222, 289–296; https://doi.org/10.1524/zkri.2007.222.6.289.Search in Google Scholar

39. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; https://doi.org/10.1524/zkri.2007.222.7.341.Search in Google Scholar

40. Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2003, 218, 275; https://doi.org/10.1524/ncrs.2003.218.jg.297.Search in Google Scholar

41. Buhl, J.-C., Gesing, T. M., Kerkamm, I., Gurris, C. Microporous Mesoporous Mater. 2003, 65, 145–153; https://doi.org/10.1016/j.micromeso.2003.07.004.Search in Google Scholar

42. Buhl, J.-C., Gesing, T. M., Gurris, C. Microporous Mesoporous Mater. 2001, 50, 25–32; https://doi.org/10.1016/s1387-1811(01)00430-9.Search in Google Scholar

43. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2003, 218, 332–344; https://doi.org/10.1524/zkri.218.5.332.20731.Search in Google Scholar

44. Pope, S. J. A., West, Y. D. Spectrochim. Acta Part A Mol. Spectrosc. 1995, 51, 2027–2037; https://doi.org/10.1016/0584-8539(95)01509-1.Search in Google Scholar

45. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part A: Theory and Applications in Inorganic Chemistry, 6th ed.; Wiley: Hoboken, 2009.Search in Google Scholar


Supplementary material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0027).


Received: 2020-05-03
Accepted: 2020-05-20
Published Online: 2020-07-01
Published in Print: 2020-07-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/zkri-2020-0027/html
Scroll Up Arrow