Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 25, 2022

Electronic structure of the homologous series of Ruddlesden–Popper phases SrO(SrTiO3) n , (n = 0–3, ∞)

  • Christian Ludt

    Christian Ludt took his first steps towards scientific work at the TU Bergakademie Freiberg during his studies of applied natural sciences. His first contact with the later field of ab-initio methods, especially DFT, was during his Bachelor thesis at the Institute of Theoretical Physics on “Electronic structure and magnetic properties of a nickel(II) formate complex” in 2014. Christian completed his Master’s degree with specialization in solid-state physics, now at the Institute of Experimental Physics, with the Master thesis “Interactions of Ruddlesden-Popper phases and Migration-Induced Field-Stabilized Polar phase in Strontium Titanate”. Here began his work in the field of crystallography, which he continued in the context of his work, as a research associate, at this position since 2019.

    EMAIL logo
    and Matthias Zschornak

Abstract

The system SrO(SrTiO3) n contains promising compounds for several applications, whose functionalities all depend in particular on the band structure of the respective crystal. While the electronic structure of SrO and SrTiO3 is sufficiently clarified in literature, there is a lack of information concerning the Ruddlesden–Popper (RP) phases. In this work, density functional theory is used to compute the electronic structure for the homologous series with n = 0–3, ∞. The according band structures are presented and effective masses are given for the complete system. In addition, the calculations are consulted to discuss the thermodynamical stability of the RP phases, confirming the gain of formation energy up to n = 3, as reported in recent literature. A promising possibility for applications has been found, analyzing theses band structures: As the optical gaps at distinct high-symmetry points of the Brillouin zone show different dependencies on the lattice parameters, as it is reported for SrO in literature, a similar behavior could be expected in particular for the RP phase with n = 1.


Corresponding author: Christian Ludt, TU Bergakademie Freiberg, Leipziger Straße 23, D-09596, Freiberg, Germany, E-mail:

About the author

Christian Ludt

Christian Ludt took his first steps towards scientific work at the TU Bergakademie Freiberg during his studies of applied natural sciences. His first contact with the later field of ab-initio methods, especially DFT, was during his Bachelor thesis at the Institute of Theoretical Physics on “Electronic structure and magnetic properties of a nickel(II) formate complex” in 2014. Christian completed his Master’s degree with specialization in solid-state physics, now at the Institute of Experimental Physics, with the Master thesis “Interactions of Ruddlesden-Popper phases and Migration-Induced Field-Stabilized Polar phase in Strontium Titanate”. Here began his work in the field of crystallography, which he continued in the context of his work, as a research associate, at this position since 2019.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge funding by the DFG within the project DFG 409743569, ZS 120/1-1. Further funding was provided within DFG 442646446, ZS 120/5-1 and DFG 397252409.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zschornak, M. Defect-induced Local Electronic Structure Modifications within the System SrO-SrTiO3-TiO2. Ph.D. thesis, 2014.Search in Google Scholar

2. Moritomo, Y., Asamitsu, A., Kuwahara, H., Tokura, Y. Nature 1996, 380, 141. https://doi.org/10.1038/380141a0.Search in Google Scholar

3. Barsan, N., Koziej, D., Weimar, U. Sensor. Actuator. B Chem. 2007, 121, 18. https://doi.org/10.1016/j.snb.2006.09.047.Search in Google Scholar

4. Korotcenkov, G. Mater. Sci. Eng., B 2007, 139, 1. https://doi.org/10.1016/j.mseb.2007.01.044.Search in Google Scholar

5. Stöcker, H., Hanzig, J., Zschornak, M., Mehner, E., Jachalke, S., Richter, C., Hanzig, F., Meutzner, F., Leisegang, T., Meyer, D. C. Cryst. Res. Technol. 2017, 52, 1600222.10.1002/crat.201600222Search in Google Scholar

6. Richter, C., Zschornak, M., Novikov, D., Mehner, E., Nentwich, M., Hanzig, J., Gorfman, S., Meyer, D. C. J. Art. Res. Supp. 2018, 178. 29330508. https://doi.org/10.1038/s41467-017-02599-6.Search in Google Scholar PubMed PubMed Central

7. Leisegang, T., Stöcker, H., Levin, A. A., Weißbach, T., Zschornak, M., Gutmann, E., Rickers, K., Gemming, S., Meyer, D. C. Phys. Rev. Lett. 2009, 102, 087601. https://doi.org/10.1103/physrevlett.102.087601.Search in Google Scholar PubMed

8. Hanzig, J., Mehner, E., Jachalke, S., Hanzig, F., Zschornak, M., Richter, C., Leisegang, T., Stöcker, H., Meyer, D. C. New J. Phys. 2015, 17, 023036. https://doi.org/10.1088/1367-2630/17/2/023036.Search in Google Scholar

9. Khanbabaee, B., Mehner, E., Richter, C., Hanzig, J., Zschornak, M., Pietsch, U., Stöcker, H., Leisegang, T., Meyer, D. C., Gorfman, S. Appl. Phys. Lett. 2016, 109, 222901. https://doi.org/10.1063/1.4966892.Search in Google Scholar

10. Meyer, D. C., Levin, A. A., Bayer, S., Gorbunov, A., Pompe, W., Paufler, P. Appl. Phys. A 2005, 80, 515. https://doi.org/10.1007/s00339-004-3063-6.Search in Google Scholar

11. Stöcker, H., Zschornak, M., Richter, C., Hanzig, J., Hanzig, F., Hinze, A., Potzger, K., Gemming, S., Meyer, D. C. Scripta Mater. 2014, 86, 1.10.1016/j.scriptamat.2014.02.014Search in Google Scholar

12. Stöcker, H., Zschornak, M., Leisegang, T., Shakhverdova, I., Gemming, S., Meyer, D. C. Cryst. Res. Technol. 2010, 45, 13.10.1002/crat.200900612Search in Google Scholar

13. Van Keuls, F. W., Romanofsky, R. R., Bohman, D. Y., Winters, M. D., Miranda, F. A., Mueller, C. H., Treece, R. E., Rivkin, T. V., Galt, D. Appl. Phys. Lett. 1997, 71, 3075. https://doi.org/10.1063/1.120251.Search in Google Scholar

14. Xi, X. X., Li, H.-C., Si, W., Sirenko, A. A., Akimov, I. A., Fox, J. R., Clark, A. M., Hao, J. J. Electroceram. 2000, 4, 393. https://doi.org/10.1023/a:1009903802688.10.1023/A:1009903802688Search in Google Scholar

15. Guan, L., Li, M., Li, X., Feng, L., Teng, F., Liu, B., Wei, Z., Musgrave, C. B. Comput. Mater. Sci. 2015, 96, 223. https://doi.org/10.1016/j.commatsci.2014.09.026.Search in Google Scholar

16. Sulaeman, U., Yin, S., Sato, T. IOP Conf. Series: Mater. Sci. Eng. 2011, 18, 032018. https://doi.org/10.1088/1757-899x/18/3/032018.Search in Google Scholar

17. Ropp, R. C. Encyclopedia of the Alkaline Earth Compounds; Elsevier: Oxford, 2013.10.1016/B978-0-444-59550-8.00001-6Search in Google Scholar

18. Zschornak, M., Gemming, S., Gutmann, E., Weißbach, T., Stöcker, H., Leisegang, T., Riedl, T., Tränkner, M., Gemming, T., Meyer, D. C. Acta Mater. 2010, 58, 4650. https://doi.org/10.1016/j.actamat.2010.04.035.Search in Google Scholar

19. Witek, S., Smyth, D. M., Piclup, H. J. Am. Ceram. Soc. 1984, 67, 372. https://doi.org/10.1111/j.1151-2916.1984.tb19540.x.Search in Google Scholar

20. Schmachtel, J., Müller-Buschbaum, H. Z. Naturforsch. B Chem. Sci. 1980, 35, 4. https://doi.org/10.1515/znb-1980-0103.Search in Google Scholar

21. Hessen, B., Sunshine, S., Siegrist, T. J. Solid State Chem. 1991, 94, 306. https://doi.org/10.1016/0022-4596(91)90196-o.Search in Google Scholar

22. Ruddlesden, S. N., Popper, P. Acta Crystallogr. 1957, 10, 538.https://doi.org/10.1107/s0365110x57001929.Search in Google Scholar

23. Ruddlesden, S. N., Popper, P. Acta Crystallogr. 1958, 11, 54. https://doi.org/10.1107/s0365110x58000128.Search in Google Scholar

24. Riedl, T., Gemming, T., Weissbach, T., Seifert, G., Gutmann, E., Zschornak, M., Meyer, D. C., Gemming, S. Ultramicroscopy 2009, 110, 26. https://doi.org/10.1016/j.ultramic.2009.09.001.Search in Google Scholar

25. EMC 2008 14th European Microscopy Congress 1-5 September 2008; Richter, S., Schwedt, A., Eds.; Springer Berlin Heidelberg: Aachen, Germany, 2008.Search in Google Scholar

26. Lee, C.-H., Podraza, N. J., Zhu, Y., Berger, R. F., Shen, S., Sestak, M., Collins, R. W., Kourkoutis, L. F., Mundy, J. A., Wang, H., Mao, Q., Xi, X., Brillson, L. J., Neaton, J. B., Muller, D. A., Schlom, D. G. Appl. Phys. Lett. 2013, 102, 122901. https://doi.org/10.1063/1.4798241.Search in Google Scholar

27. Ghaffari, M., Liu, T., Huang, H., Tan, O., Shannon, M. Mater. Chem. Phys. 2012, 136, 347. https://doi.org/10.1016/j.matchemphys.2012.06.037.Search in Google Scholar

28. Ghaffari, M., Shannon, M., Hui, H., Tan, O. K., Irannejad, A. Surf. Sci. 2012, 606, 670. https://doi.org/10.1016/j.susc.2011.12.013.Search in Google Scholar

29. Matar, S. F., Eyert, V., Villesuzanne, A., Whangbo, M.-H. Phys. Rev. B 2007, 76, 054403. https://doi.org/10.1103/physrevb.76.054403.Search in Google Scholar

30. Matar, S. F., Etourneau, J. J. Solid State Chem. 2017, 255, 82. https://doi.org/10.1016/j.jssc.2017.06.016.Search in Google Scholar

31. Cappellini, G., Bouette-Russo, S., Amadon, B., Noguera, C., Finocchi, F. J. Phys. Condens. Matter 2000, 12, 3671. https://doi.org/10.1088/0953-8984/12/15/315.Search in Google Scholar

32. Taurian, O. E., Springborg, M., Christensen, N. E. Solid State Commun. 1985, 55, 351. https://doi.org/10.1016/0038-1098(85)90622-2.Search in Google Scholar

33. Zupan, A., Petek, I., Causà, M., Dovesi, R. Phys. Rev. B 1993, 48, 799. https://doi.org/10.1103/physrevb.48.799.Search in Google Scholar PubMed

34. Baltache, H., Khenata, R., Sahnoun, M., Driz, M., Abbar, B., Bouhafs, B. Phys. B Condens. Matter 2004, 344, 334. https://doi.org/10.1016/j.physb.2003.09.274.Search in Google Scholar

35. Perdew, J. P., Wang, Y. Phys. Rev. B 1992, 45, 13244. https://doi.org/10.1103/physrevb.45.13244.Search in Google Scholar PubMed

36. van Benthem, K., Elsässer, C., French, R. H. J. Appl. Phys. 2001, 90, 6156. https://doi.org/10.1063/1.1415766.Search in Google Scholar

37. Ekuma, C. E., Jarrell, M., Moreno, J., Bagayoko, D. AIP Adv. 2012, 2, 012189. https://doi.org/10.1063/1.3700433.Search in Google Scholar

38. Noguera, C. Phil. Mag. Lett. 2000, 80, 173. https://doi.org/10.1080/095008300176308.Search in Google Scholar

39. Reshak, A. H., Auluck, S., Kityk, I. Jpn. J. Appl. Phys. 2008, 47, 5516. https://doi.org/10.1143/jjap.47.5516.Search in Google Scholar

40. Gonze, X., Amadon, B., Antonius, G., Arnardi, F., Baguet, L., Beuken, J.-M., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., Brouwer, N., Bruneval, F., Brunin, G., Cavignac, T., Charraud, J.-B., Chen, W., Côté, M., Cottenier, S., Denier, J., Geneste, G., Ghosez, P., Giantomassi, M., Gillet, Y., Gingras, O., Hamann, D. R., Hautier, G., He, X., Helbig, N., Holzwarth, N., Jia, Y., Jollet, F., Lafargue-Dit-Hauret, W., Lejaeghere, K., Marques, M. A. L., Martin, A., Martins, C., Miranda, H. P. C., Naccarato, F., Persson, K., Petretto, G., Planes, V., Pouillon, Y., Prokhorenko, S., Ricci, F., Rignanese, G.-M., Romero, A. H., Schmitt, M. M., Torrent, M., van Setten, M. J., Troeye, B. V., Verstraete, M. J., Zérah, G., Zwanziger, J. W. Comput. Phys. Commun. 2020, 248, 107042. https://doi.org/10.1016/j.cpc.2019.107042.Search in Google Scholar

41. Romero, A. H., Allan, D. C., Amadon, B., Antonius, G., Applencourt, T., Baguet, L., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., Bruneval, F., Brunin, G., Caliste, D., Côté, M., Denier, J., Dreyer, C., Ghosez, P., Giantomassi, M., Gillet, Y., Gingras, O., Hamann, D. R., Hautier, G., Jollet, F., Jomard, G., Martin, A., Miranda, H. P. C., Naccarato, F., Petretto, G., Pike, N. A., Planes, V., Prokhorenko, S., Rangel, T., Ricci, F., Rignanese, G.-M., Royo, M., Stengel, M., Torrent, M., van Setten, M. J., Troeye, B. V., Verstraete, M. J., Wiktor, J., Zwanziger, J. W., Gonze, X. J. Chem. Phys. 2020, 152, 124102. https://doi.org/10.1063/1.5144261.Search in Google Scholar PubMed

42. Goedecker, S., Teter, M., Hutter, J. Phys. Rev. B 1996, 54, 1703. https://doi.org/10.1103/physrevb.54.1703.Search in Google Scholar PubMed

43. Kresse, G., Hafner, J. Phys. Rev. B 1993, 47, 558. https://doi.org/10.1103/physrevb.47.558.Search in Google Scholar

44. Kresse, G., Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.10.1016/0927-0256(96)00008-0Search in Google Scholar

45. Kresse, G., Furthmüller, J. Phys. Rev. B 1996, 54, 11169.10.1103/PhysRevB.54.11169Search in Google Scholar

46. Kresse, G., Joubert, D. Phys. Rev. B 1999, 59, 1758. https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

47. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., Sutton, A. P. Phys. Rev. B 1998, 57, 1505. https://doi.org/10.1103/physrevb.57.1505.Search in Google Scholar

48. Mccoy, M. A., Grimes, R. W., Lee, W. E. Philos. Mag. A 1997, 75, 833. https://doi.org/10.1080/01418619708207205.Search in Google Scholar

49. Becke, A. D., Johnson, E. R. J. Chem. Phys. 2006, 124, 221101. https://doi.org/10.1063/1.2213970.Search in Google Scholar

50. Tran, F., Blaha, P. Phys. Rev. Lett. 2009, 102, 226401. https://doi.org/10.1103/physrevlett.102.226401.Search in Google Scholar

51. Bilbao Crystallographic Server, 2021.Search in Google Scholar

52. Zhou, N., Chen, G., Zhang, H., Zhou, C. J. Alloys Compd. 2009, 477, L17. https://doi.org/10.1016/j.jallcom.2008.10.054.Search in Google Scholar

53. Adewale, A. A., Chik, A. Int. J. 2019, 12, 11.Search in Google Scholar

54. Gao, S. Comput. Phys. Commun. 2003, 153, 190. https://doi.org/10.1016/s0010-4655(03)00224-8.Search in Google Scholar

55. Wang, V., Xu, N., Liu, J.-C., Tang, G., Geng, W.-T. Comput. Phys. Commun. 2021, 267, 108033. https://doi.org/10.1016/j.cpc.2021.108033.Search in Google Scholar

56. Poncé, S., Macheda, F., Margine, E. R., Marzari, N., Bonini, N., Giustino, F. Phys. Rev. Research 2021, 3, 043022.10.1103/PhysRevResearch.3.043022Search in Google Scholar

57. Okuda, T., Nakanishi, K., Miyasaka, S., Tokura, Y. Phys. Rev. B 2001, 63, 113104. https://doi.org/10.1103/physrevb.63.113104.Search in Google Scholar

58. Marques, M., Teles, L. K., Anjos, V., Scolfaro, L. M. R., Leite, J. R., Freire, V. N., Farias, G. A., da Silva, E. F. Appl. Phys. Lett. 2003, 82, 3074. https://doi.org/10.1063/1.1570922.Search in Google Scholar

59. Zulfiqar, W., Alay-e Abbas, S. M., Abbas, G., Laref, A., Larsson, J. A., Shaukat, A. J. Mater. Chem. C 2021, 9, 4862. https://doi.org/10.1039/d0tc05964a.Search in Google Scholar

60. Janotti, A., Steiauf, D., Van de Walle, C. G. Phys. Rev. B 2011, 84, 201304. https://doi.org/10.1103/physrevb.84.201304.Search in Google Scholar

61. Samanta, S., Saini, S. M. Indian J. Phys. 2019, 93, 335. https://doi.org/10.1007/s12648-018-1298-x.Search in Google Scholar

62. Mandal, S., Haule, K., Rabe, K. M., Vanderbilt, D. npj Comput. Mater. 2019, 5, 1. https://doi.org/10.1038/s41524-019-0251-7.Search in Google Scholar

Received: 2021-12-16
Accepted: 2022-03-22
Published Online: 2022-04-25
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2023 from https://www.degruyter.com/document/doi/10.1515/zkri-2021-2077/html
Scroll to top button