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Sound propagat ion in di lute pure gases, b o t h m o n a t o m i c a n d p o l y a t o m i c , has been considered 
f r o m the po int o f v iew o f the W a l d m a n n - S n i d e r equat ion . It is shown that the c o m m o n l y e m p l o y e d 
assumption that sound propagat ion in gases is equ iva lent t o the propagat i on o f plane waves is 
val id o n l y in the region where collisions restore equi l ibr ium faster than it is perturbed b y the 
sound waves . A systematic t runcat ion procedure f o r an expans ion o f the perturbat ion func t i on 
in irreducible Cartesian tensors is introduced and then i l lustrated in solutions for three specific 
kinds o f molecules, hel ium, nitrogen and rough spheres. T h e agreement be tween theory and 
exper iment is rather g o o d for sound absorpt ion in the region where the rat io o f the collision a n d 
sound frequencies is greater than 1.5. T h e agreement in the case o f dispersion is g o o d over the 
whole measured pressure range. One useful result obta ined is t o show the p o l y a t o m i c gas calcula-
t ions in second approx imat ion have as g o o d agreement wi th exper iment as the calculations f o r 
nob le gases in third approx imat ion . This can be related t o the possession b y the p o l y a t o m i c gas 
o f a bu lk viscosity which dominates in sound propagat ion . 

1. Introduction 

A quantitative description of bulk molecular 
phenomena in gases has long been the aim of kinetic 
theory. One of the problems which has been of cen-
tral interest in this field has been the development 
of an accurate description of the propagation of 
sound waves in gases. Most descriptions of sound 
propagation start from an implicitly assumed equi-
valence between the experimental fact that sound 
waves are transmitted through the gas and the 
theoretical description of plane wave propagation. 
A critical examination of this assumption (see 
Section 2) shows that the equivalence is valid only 
when the collision frequency in the gas is greater 
than the sound frequency, so that the higher the 
sound frequency, the higher the density at which 
the propagation of sound can no longer be described 
in terms of plane wave propagation. 

Basically, there are two approaches to the solution 
of the problem of plane wave propagation in gases: 
these may, in essence, be termed the macroscopic 
and microscopic approaches. In the former approach, 
the hydrodynamic equations for the gas are derived 
from the Boltzmann equation or, for gases with 
degenerate internal degrees of freedom, the Wald-
mann-Snider equation1-2. Then the (common) space 
and time dependence of a plane wave is imposed 
upon the macroscopic variables, i.e., these variables 
are assumed to behave as exp(icot — xz), with x, 
a (complex) propagation constant, for a sound wave 
travelling in the z-direction. Following this, the 
equations for the macroscopic variables are linear-

ized with respect to the acoustic disturbances, the 
linearization procedure giving rise to a compatibility 
condition on x which can then be solved to deter-
mine K as a function of the angular frequency co. 
The macroscopic approach suffers, however, from 
one rather serious drawback and that is the use of 
a Chapman-Enskog procedure3 '4 in solving the 
Boltzmann equation: this has as a consequence that 
only normal solutions (in the sense of H I L B E R T 5 ) 
are permitted. The very nature of the problem 
would suggest that these solutions are too restrictive. 
In fact, it has been found that higher approxima-
tions in the Chapman-Enskog scheme give slightly 
worse results than the lowest approximation6. This 
indicates a possible nonconvergence of the method. 
Moreover, it has been shown7 that the agreement 
between the results obtained by employing the 
Fourier-Navier-Stokes hydrodynamic equations and 
experiment is largely fortuitous. For these reasons, 
the macroscopic approach will not be considered 
further in this article. In contradistinction to the 
macroscopic approach, the microscopic approach 
directly imposes the space and time dependence of 
a plane wave solution upon the perturbation from 
equilibrium which appears in the linearized Boltz-
mann equation. After this step has been taken, there 
are a number of solution procedures possible. Of 
these only one will be utilized and this will be de-
scribed in detail in Section 3. 

As has already been remarked in passing, the 
correct kinetic equation for gases possessing internal 
degrees of freedom is the linearized Waldmann-
Snider equation. For certain specific cases, such as 



that of a noble gas where the intermolecular poten-
tial is strictly spherical or of a gas possessing internal 
degrees of freedom none of which are degenerate, the 
Waldmann-Snider equation reduces to the more 
commonly-known kinetic equations of BOLTZMANN 
and W A N G CHANG and U H L E N B E C K 8 , respectively. 
However, for a description of rotational relaxation, 
the linearized Waldmann-Snider equation should be 
employed since, in general, rotational energy levels 
are degenerate. 

In recent years the quantitative description of 
sound absorption and dispersion in dilute gases has 
been of considerable interest. Much of this interest 
has centred around the possibility of utilizing a 
study of the deviation of sound absorption and dis-
persion from the Navier-Stokes description as an 
experimental test of the validity of the (linearized) 
Boltzmann equation. In order to do this, quanti-
tative theoretical expressions are necessary for the 
absorption and dispersion of sound. Quantitative 
calculations, however, require either a detailed 
knowledge of the eigenvalue spectrum of the collision 
operator (together with the eigenfunctions) or a 
procedure of arriving at reasonably accurate ap-
proximations thereto. One procedure, recently 
introduced by FOCH9, makes use of the knowledge 
of the spectrum of the collision operator for Maxwell 
molecules in order to give a perturbation theory 
treatment for the addition of the (inhomogeneous) 
flow term to the Boltzmann equation for a spatially 
homogeneous system. This gives rise to a power 
series expansion in the ratio of the sound frequency 
to the collision frequency. The results of such a 
development and a comparison of theory and ex-
periment for monatomic molecules has been given 
by FOCH and F O R D 10 in an article in the De Boer-
Uhlenbeck series. 

While the procedure developed by Foch works 
fairly well (at very low frequencies) for monatomic 
gases where Maxwell molecules can be employed in 
zeroeth order, it is at the present time not possible 
to do the same for polyatomic gases where the (in 
general non-self-adjoint) Waldmann-Snider collision 
operator must be considered. Hence some other 
method of calculating sound absorption and dis-
persion from the Waldmann-Snider equation must 
be evolved. 

Most of the recent work on sound propagation has 
made use of model equations. Although apparent 
good agreement with experiment has been obtained 

over an extensive pressure range (or, equivalently, 
frequency range) by such a procedure (see, e.g., the 
work of H A N S O N , MORSE and S I R O V I C H 1 1 ) , "the 
method of model equations remains an uncontrolled 
approximation method"10 . The present work does 
not attempt to explain sound absorption and dis-
persion over the whole measured frequency range 
but rather concentrates on calculating, in as accu-
rate a manner as possible, these phenomena in the 
low frequency range where, in fact, meaningful 
comparison with experiment is possible. One of the 
particular aims of this work is to examine the in-
fluence of internal states on sound absorption and 
dispersion. 

The calculational procedure employed here is 
essentially that introduced earlier by W A N G CHANG 
and UHLENBECK12 in their classic work on sound 
propagation in monatomic gases. This truncated 
expansion procedure, with the slight modifications 
required when describing polyatomic gases, is shown 
to give as good agreement with experiment for 
diatomic gases as it gives for monatomic gases, thus 
putting all gases on the same footing. This is illus-
trated explicitly in Section 4. The gases chosen as 
representative of their classes are helium for the 
monatomics and nitrogen for the diatomics: in 
addition to this, the rough sphere model has also 
been utilized as an example of a polyatomic gas. 
Although the method used in this paper requires 
not only experimental data on sound propagation 
but also those on the SENFTLEBEN-BEENAKKER 
effects13, the field of gases is not essentially nar-
rowed by the latter requirement. In fact, it appears 
that nitrogen is almost the only diatomic gas for 
which extensive measurements are available for 
sound absorption and dispersion14. 

2 . G e n e r a l T h e o r y 

The absorption and dispersion of sound waves in 
a pure gas is governed by the Waldmann-Snider 
equation. Since the perturbation from equilibrium 
caused by the sound wave is (supposedly) small, the 
linearized version of this equation may be used. It 
has the form 

- Ö9?/Ö<- Vk- W{d(pldz) = (2.1) 

As usual, the perturbation of the distribution func-
tion-density matrix / from its (absolute) equilibrium 
value /o is denoted by f0(p so that / = /0(1 + (p), 



with /o given by 

fo=(27im kT)-W Q-iexV[-W*- (JflntlkT)]. 
(2.2) 

In Eq. (2.2), W is the reduced peculiar velocity, 
int the Hamiltonian for internal states and Q the 

internal state partition function, 

Q — Tr exp [— J f i n t \ k T } . 

Further, V in Eq. (2.1) is the quantity (2kT/m)1'2, 
while k is the unit vector in the (positive) z-direction, 
the direction in which the acoustic disturbance 
travels. The operator is the (accretive) linearized 
Waldmann-Snider collision super operator, the ex-
plicit form of which will not be needed here. The 
actual form of ^ o is not required because the various 
matrix elements arising in the calculation of sound 
absorption and dispersion can be evaluated from 
other (independent) experimental data, in parti-
cular, from Senftleben-Beenakker data. 

In order for a solution of Eq. (2.1) to represent a 
sound wave, it is necessary to specify the boundary 
conditions. A derivation of the requisite boundary 
conditions for a typical (idealized) experiment will 
now be given. Let the acoustic source, e.g., a crystal 
transducer or a condenser microphone, be represen-
ted by an infinite, flat, sinusoidally oscillating wall 
in the rry-plane (z — 0). The velocity of this wall 
(in the z-direction) is then given by 

w = wq sin o) t, (2.3) 

where the amplitude WQ is infinitesimally small. If 
it is assumed that there is perfect accommodation 
at this wall, then the distribution function of the 
gas at z = 0 will have the form 

f(z = 0,t) ^ ^ (2.4) 
= / 0exp{(&- W)2-[k-W-\J0sinco*)2} , 

where AQ — — 2WQ]V. The assumption is made that 
the boundary layers (with thickness of the order of 
a few mean-free-path lengths) are thin compared 
with the distance between the sound source and the 
sound receiver. The boundary condition at z = 0, 
making use of the smallness of the disturbance, is 
given by 

<p{0, t) = A0k- W sin. i»t. (2.5) 

In order to simplify the calculations, the complex 
analogue of this equation, 

cp(0, t) = (fQexp(icot) = Aok • Wexp(iojt), (2.6) 
will be employed in the following. This is a valid 

procedure since the problem is a linear one. For 
k • W 0 (molecules with k • W — 0 do not parti-
cipate in the processes causing sound absorption and 
dispersion), the formal solution of Eq. (2.1) satis-
fying the boundary condition (2.6) is 

cp{z, t)=exp{i co (t — zlVk • W)-(zjVk- W) '(po • 
(2.7) 

At this point it is useful to examine in detail the 
measuring process in a typical sound experiment. 
The most reliable techniques presently available use 
either a double crystal or double microphone inter-
ferometer, so that the receiver is sensitive to exactly 
the same type of disturbance as has been created by 
the transmitter. Thus, the signal monitored with 
the receiver will be proportional to the quantity14 a 

Q(z) = (k-Wrj(k-W),cp(z)), (2.8) 

wrhere r/(x) is the Heaviside function [rj(x) = 1 for 
x > 0, rj (x) — 0 for x < 0] and where the inner 
product of two operators A and B is defined by 

(A,B) = T r jdpfoAtB, (2.9) 

with the trace being over all quantum mechanical 
states and the dagger representing a quantum 
mechanical adjoint. Further, cp(z) appearing in 
Eq. (2.8) is the space dependent part of the disturb-
ance, cp(z) = cp(z, t) exp(— icot) . Absorption and 
dispersion are obtained experimentally from the 
amplitude and phase records versus distance, 
respectively, so that the absorption co-efficient a (z) 
and the sound velocity u (z) are inferred from 

a(z) = — d ln | Q\/dz (2.10) 
and 

u{z)= - dz a r c t a n ( I m $ / R e Q ) , (2.11) 

respectively. Note that both of these quantities are, 
in general, functions of z, the distance between 
transmitter and receiver. 

When the gas is extremely dilute, the collision 
operator may be dropped from the solution (2.7) 
so that Q(z) is given by 

oo 
Q{Z)=AQJI-V2 f ( f c - W)2 

Ö 
X e x p { - i c o z l i V k - W) — {k • W)2}d{k • IF). (2.12) 

A similar form has been obtained by K A H N and 
MINTZER15 following a different line of argument. 
Their result for the limiting low density absorption 



and dispersion, which is strongly dependent on z, is 
identical with the result derived from Equation 
(2.12). They have shown that this result is in good 
agreement with experiment. If it is assumed that 
the boundary conditions are the same both for 
monatomic and for polyatomic molecules, then it is 
clear that in this case, as Q(z) is independent of the 
collision operator, it is insensitive both to the inter-
molecular potential and to the presence or absence 
of internal states in the molecules. Hence, as the 
principal purpose of this work is to study the effect 
of internal states on sound absorption and disper-
sion, such a case is not of further interest. 

Of interest here, then, is the case for which the 
collision frequency is larger than the frequency of 
the sound wave being propagated. When this con-
dition is satisfied, a molecule will undergo several 
collisions in the time between two successive dis-
turbances caused by the source so that it will have 
"forgotten" that the source is present when it is 
disturbed anew. This means that the distribution 
will return to its equilibrium value in a time small 
compared with the characteristic time associated 
with the sound wave. In practice, this allows the 
ratio of collision frequency to sound frequency to 
approach 1 (the lowest limiting value is often found 
to be of the order of 1.5). 

For the case described above, consider the ope-
rator 

x(oo) = (Vk- JF ) - i (^ 0 + *'co). (2.13) 

If this operator has a complete set of eigenfunctions 
ipx with eigenvalues ix* (co) for any value of OJ, i.e., 

(Vk-W)-1(@Q+io>)Vx=ix*{(o)Wx, (2.14) 

then the initial disturbance cpo can be expanded in 
terms of the xpy. as 

Inserting this expansion into the formal solution 
(2.7) gives for the space dependent part of <p(z, t) 
the result 

cp(z) = X^o^expf— iz R e * — z l m * ] ipx . (2.15) 

In the limit of large z, the only contribution to 
the sum (2.15) will be the one with the minimal 
value of I m * : let the propagation constant cor-
responding to this minimal value be XQ 16. The 
asymptotic behaviour of cp (z) as z - > oo is then 

~ e*„^*oexP[— izHexo — i l m x 0 ] , (2.16) 
Z-+oo 

so that 

Q(z) ~e„(k- Wrj(k-W),tpJ 
Z —> oo 

X exp[— izRe*o — z l m x o ] . (2.17) 

In the limit z - » oo, the absorption and dispersion 
are given by [see Eqs. (2.10) and (2.11)] 

a = Im*o and co/u = Re*o or u = co/Re XQ, (2.18) 

respectively. 
Equation (2.14) is equivalent to (since k • W 4= 0) 

( - * < u + ix*Vk- W)y, = &0y,. (2.19) 

Tins equation may be obtained from Eq. (2.1) by 
setting cp = ipexp (i co t — x*z). It is thus seen that 
in the case that collisions restore equilibrium faster 
than the acoustic disturbance destroys it, the ob-
sorption and dispersion of sound waves are identical 
with the absorption and dispersion of the plane 
wave solution of the Waldmann-Snider equation 
with minimal absorption in the limit of an infinitely 
long interferometer. A plane wave solution is not 
obtained at low number densities since the solution 
(2.12) is certainly not represented by a plane wave 
for any finite z, and small values of z are required 
by experimentalists at low pressures in order to 
overcome the increase in sound attenuation. 

3. Methods of Solution 

Three metbodsfor obtaining solutions of Eq. (2.19) 
have been developed, two of which make use of the 
fact that Eq. (2.19) is equivalent to the (infinite) set 
of coupled equations obtained by expanding xp in a 
complete set of basis functions orthogonal with 
respect to the inner product (2.9) and then taking 
the inner product of the resulting equation with 
each of the basis functions in turn. If this set of 
equations is to have a nontrivial solution, the in-
finite determinant of the coefficients of these 
equations must vanish. This requirement gives a 
condition on x*: the value of x* satisfying this 
condition and with minimal imaginery part is then 
the sought-after propagation constant. 

An infinite set of equations is clearly intractable 
and so an approximation procedure has to be de-
vised. The method originally proposed by W A N G 
CHANG and U H L E N B E C K 1 2 simply truncated the 
basis set after N terms. Mathematically, this may 
be expressed in the following way. Let P^ be the 
projection operator on the subspace spanned by the 



first N basis functions. Then the truncation method 
in essence replaces Eq. (2.19) by 

PN{-ico + ix* Vk- W) PNxp = PN<%0PNxp . ( 3 . 1 ) 

Since this method has been used with considerable 
success in other problems involving the solution of 
the Waldmann-Snider equation13, good results 
might be expected in this way. Indeed, for pressures 
for which the collision frequency is larger than the 
sound frequency, this is so (see Section 4). Such a 
result is not unexpected for small values of N since 
k • W couples a second set of expansion tensors 
strongly to the set which would be employed for 
higher frequencies (or lower pressures). But, as 
Eq. (2.19) is strictly valid only in the cases where 
Eq. (3.1) is expected to yield good results, this 
truncation procedure appears to be suitable. It is 
known from the extensive numerical investigations 
of P E K E R I S et al .1 7 '1 8 that taking N as large as a 
few hundreds does not appreciably increase the 
range of frequencies and pressures over which the 
solution of Eq. (3.1) agrees with experiment. Since 
the method should work much better at lower pres-
sures for high N, it is evident that an assumption 
that Eq. (2.19) is valid for all pressures and fre-
quencies would be at fault, as has been seen in 
Section 2. 

Since it is the Waldmann-Snider'collision operator 
which is employed and since the eigenfunctions of 
this operator are unknown, the same type of basis 
used successfully in solving a number of problems 
involving the Waldmann-Snider equation, i.e., an 
expansion of xp in irreducible Cartesian tensors19, 
associated Laguerre polynomials in the reduced 
translational energy and Wang Chang-Uhlenbeck-
De Boer polynomials8 in the Hamiltonian for the 
internal states of the molecules will be utilized in 
this work. 

The second method involving expansion of xp in 
a chosen basis set involves the replacement of 
Eq. (2.19) by a model equation20 of the form 

(— iio + ix*Vk-W+C)xp 
= PN@o PN xp + C PNxp, (3.2) 

where C is an adjustable constant. A formal solution 
for xp is given by 

_ PNJ?oPNrp + CPNW 

V - _io) + ix*vk'W+C • [ö-ö) 

A closed set of equations is now generated by ex-
panding xp in the first N basis functions and taking 

moments of the resultant equation with each of 
these basis functions in turn. With a suitably chosen 
value of C, it is possible to obtain solutions which 
fit the experiment data not only at higher pressures 
but also at lower pressures. There are, however, a 
number of objections that can be raised with 
respect to this method of solution. Firstly, there is 
an adjustable parameter in the equations; secondly, 
these "good" solutions can only be obtained by 
analytically continuing the solutions for low fre-
quencies (or high pressures) beyond a "cutoff 
frequency" that is always found and which results 
from the replacement of the unbounded Boltzmann 
collision operator by a bounded one21 . 

The third method of solution of Eq. ( 2 . 1 9 ) was 
initiated by F O C H 9 . He regards Eq. ( 2 . 1 9 ) as a per-
turbed eigenvalue equation, x* being the small per-
turbation parameter. Expansions of xp and co in 
terms of x* results in a hierarchy of equations for 
the coefficients of successive powers of x*. In this 
way, co is obtained as a power series in x*; inversion 
of this series then gives x* as a function of co. This 
procedure has the disadvantage that the radii of 
convergence of the different series involved are not 
easily ascertained except in the case of hard sphere 
molecules22. The inherently simpler truncation 
method should give at least equivalent results if the 
basis is successively enlarged as follows: the (n + 1 )st 

approximation has as a basis the functions originally 
employed in the nth approximation together with 
those functions which are coupled to the functions 
of the smaller basis by the term k • W in Eq. ( 2 . 1 9 ) . 

The truncation method employed here, with the 
above-described extension scheme, is a simple 
method for the solution of Eq. ( 2 . 1 9 ) : in particular, 
for polyatomic molecules, it will be shown that in 
second approximation where all of the relevant 
collision integrals entering into sound absorption 
and dispersion can be evaluated from Senftleben-
Beenakker measurements plus measurements of the 
field-free transport coefficients, the description of 
sound obsorption and dispersion given by the pre-
sent procedure is as good as that for the noble gases 
in third approximation. Further, it seems worth 
noting that the present results are in good agreement 
with experiment over a range of pressures which 
extends about a factor ten lower than that achieved 
by means of the Foch and Ford procedure. In fact, 
at all pressures and frequencies where Eq. ( 2 . 1 9 ) 

may be expected to be valid, the theoretically 



calculated results are well within the experimental 
uncertainty of the measured results. The next 
section presents certain numerical results and their 
comparison with experiment. 

4. Numerical Results 

a) Helium 

The absorption and dispersion for helium have 
been calculated for the first, second and third ap-
proximations. The expansion of ip takes the form: 

y, = a«« + «01 ( | _ 0T2) al0 W • k \ 

+ a"(|- W2) JF-fc + «20[rj(2):[fcl(2) j 

+ A ° 2 ( g5 - I w2 + A I F 4 ) + a21 (I ~ W2) 
• [ W\ (2): [k] (2) -I- «30 [ flTJ (3) ©3 [£] (3) . (4 J ) 

The first three terms in this expansion (the sum-
mational invariants) are used in the first approxima-
tion with the result of zero absorption and a speed 
of sound equal to the adiabatic one. The second 
approximation takes the first five terms of Eq. (4.1) 
into account, while the third approximation takes 

all eight terms into account. Compatibility conditions on x* are obtained bĵ  setting the designated 
3 x 3 , 5 x 5 subdeterminants and the whole 8 x 8 determinant given in (4.2) equal to zero, respectively 

i co 0 1 2 i x* V 
0 1 i O) 1 2 i x* V 

-\ix*V \ix*V 1 i w 

0 - \ ix* V 0 
0 0 1 3 i x* V 

0 0 0 
0 0 0 
0 0 0 

0 
— f i 
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i i x* V 

0 
0 

-\ix* 1 

4 i x* V 

$ix*V 
- -I i x* V 

0 
f n~ 

3 
l_21 J 

x*V 

0 
0 
0 

f %x*V 
0 

0 
0 
0 

- I ix* V 
I n-i [!?] 

15 i 0) + n - i [02] o 
0 + 

"i ö i x • 

0 V 

0 
130 i X* V 

i% * M + i9o 

The determinant (4.2) has been obtained by in-
serting Eq. (4.1) into Eq. (2.19) and forming 
moments with the expansion tensors22. 

The collision brackets are defined in the 
usual way: If A and B are the expansion tensors 
(not including fc-dependence!) corresponding to pq 
and pq', respectively, then 

[?S'] = (2p + l ) " M A © * , # o B ) . (4.3) 

Note that the tensorial ranks of A and B have to 
be equal; this is because of rotational invariance of 
^ o and the absence of internal states. In writing 
down Eq. (4.2), use has been made of two exact 
(for molecules without internal degrees of freedom) 
relations, 

rai = f ® ] (4.4) 
and 

ffi] = f ® ] . (4-5) 
These relations may be proven by going over to 
center-of-mass and relative coordinates and per-
forming the integration over the center-of-mass 
velocity. All other collision brackets were obtained 

from the ratios 

@ ] ® ] - 1 = l - i ( ß < 2 ' 8 ) / ß ( 2 ' 2 ) ) , (4-6) 

[21] Q - i = 301/48 - t (£<2<3 ) /£ ( 2 '2 )) 
+ £ (.0(2,4)^(2,2)) } (4.7) 

and 
[ ° 2 ] Q " i = 5/2. (4.8) 

These expressions may be obtained in the same way 
as Eqs. (4.4) and (4.5). Using the tables given by 
HIRSCHFELDER, CURTISS a n d B I R D 2 3 f o r H e , a s -
suming a Lennard-Jones 6—12 interaction potential, 
gives for these ratios the values 

[1?] 0 - ! = - 0 . 1 7 7 , [ ! l ] [gj] - i = 4.215, 
[jg] [Ig]"1 = 2.50 . (4.9) 

The numerical evaluation of x* was done on an 
IBM 360/75 computer, using a FORTRAN IV 
programme24. In Fig. 1, the quantities y.u0lco and 
uo/u, with u the sound speed, UQ the adiabatic sound 
speed and a the absorption coefficient, are plotted 
versus the dimensionless parameter r = 2 [|QJjnio. 
The second and third approximations are shown. 
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Fig . 1. A b s o r p t i o n a n d dispersion coeff ic ients o f hel ium. 
T h e solid line represents the second approx imat ion calcula-
t ion , the dashed line represents the third approx imat ion 
ca lculat ion a n d the open circles represent experimental 

results taken f r o m R e f . 6. 

Due to the choice of variables, the solid curves are 
universal for any noble gas, since the actual value 
of the collision bracket [|g] is not needed. The 
dispersion relation in the second approximation is15 

I - — 
25 2 

+ 
15 - 2 5 i r ) + x 2 ( 1 3 
64 192 / \ 16 ' 6 " ' 1 4 4 

5 25 . 5 
16 _ 48 1 ' ~~ 24 

where x = Vx*/o). This relation was used to check 
the computer programme, devised so as to recognize 
a polynomial in a function defined in determinantal 
form. The experimental data displayed in Fig. 1 
have been taken from the measurements by G R E E N -
S P A N 6 at 11 MHz, using a double crystal interfero-
meter. As expected, the differences between the 
second and third approximations are relatively 
small. 

The discussion in Section 2 showed that absorp-
tion and dispersion of sound waves are identical 
with the absorption and dispersion of the plane 
wave solution of the Waldmann-Snider equation 
(in the limit of an infinitely long interferometer) 
when collisons restore equilibrium faster than the 

i r 
25 

r2j = 0, ( 4 . 1 0 ) 

acoustic disturbance destroys it. This means that 
the ratio MCoiil<*> must be greater than 1: the para-
meter r (called the rarefaction parameter) is essen-
tially that ratio. For practical purposes it can be 
expected on the basis of the arguments employed 
in Section 2 that a physically meaningful description 
of sound absorption and dispersion is given by the 
present solution procedure of the Waldmann-Snider 
equation for values of r greater than or approxi-
mately equal to 2. This is indeed found to be the 
case. From Fig. 1, it is seen that the second ap-
proximation is in good agreement with the experi-
mental data for r > 2.5 while the third approxima-
tion is in good agreement with experiment for 
r > 1.5. In contrast, the range of agreement found 
using the perturbation procedure of F O C H 9 is r > 10 . 
It should be remarked that the dispersion appears 
to be in surprisingly good agreement with experi-
ment over the whole range of r-values measured, 
especially in the third approximation. 

b) Nitrogen 

As an example of a polyatomic gas, a calculation 
for N2 was performed. The situation is slightly 
complicated in this case by the fact that in a poly-
atomic gas energy may be exchanged between the 
translational and rotational degrees of freedom. In 
second approximation, the only one considered for 
polyatomic gases in this work, xp is expanded as 
xp = a0000 + a00i0(| _ jf2) + aoooi ( B J 2 — <BJ 2 ) 0 ) 

+ a1000 W k + a1010(§ — W2) W k 

+ a1001 (BJ 2 - (BJ2>o) W k 
+ a2000 [JJ7](2):[£](2). (4.11) 

Here J is the (nuclear) rotational angular momen-
tum operator, B is the rotational constant %2\1IkT, 
with I the moment of inertia of the molecule; the 
angular brackets <(• • ->o designate an average taken 
with the weight function w_1/o- The condition on 
x* is inferred from the determinental Eq. ( 4 . 1 2 ) , 
obtained in the same way as Eq. ( 4 . 2 ) . 

i co 0 0 - \ix*V 0 0 0 
0 f ico + n - i r a rooio-i L0010J — \ ix*V 0 0 
0 »-1 [SS1S] (cm/k) i CO + »-1 [°0°o!S] 0 0 - \ (Cint/k) i X* V 0 

2 i v.* V 0 0 0 - \ix*V 
0 0 0 1- i CO + n - 1 [i!iS] _1 rioioi L1001I \ix*V 
0 0 - i (cm/k) x* V 0 n-1 [iSiS ] \ (dat/k) i co + n"1 [\°0°0\] 0 
0 0 0 - \ix*V iix*V 0 J ico + %n-1 [IZ] 

( 4 . 1 2 ) 



For N2, Cint/k has the value 1. The collision 
brackets occurring in the determinant (4.12) can be 
evaluated with the aid of recently derived approxi-
mate relations25 for homonuclear diatomic mole-
cules (for which the dominant nonspherical part of 
the intermolecular potential may be assumed to be 
of the (single) P2-type) in conjunction with the 
experimental shear viscosity rj0 and the Senftleben-
Beenakker effects (magnetic field dependence of the 
transport coefficients). This is achieved in the fol-
lowing manner. The collision bracket [|oool 
tained directly from rj0, [ooiol anc^ tiooiJ a r e g i y e n 

in terms of the saturation value and position at 
half-height on the H/p axis (H is the magnetic field 
strength and p is the pressure) of the Senftleben-
Beenakker shear viscosity effect. For the evaluation 
of the bracket [}oio1> and the shear viscosity 
saturation value are required while for evaluation 
of [{oo!] the saturation value and half-value position 
for the shear viscosity effect are needed as well as 
the position on the H/p axis of the thermal conduc-
tivity effect. The explicit evaluation of these col-
lision brackets can be carried out with the aid of the 
numerical values of the corresponding cross sections 
given in Ref. 26 together with their relation to the 
collision brackets given in 27. 

For N2, the relevant ratios so found are: 
rOOlOn ( - 2 0 0 0 1 - 1 _ 0 7 0 L0010J L2000J — 
m [ I D - 1 = 2.15, (4.13) 
ßsasffii-̂ o.29, 
[ f f l & ^ o . s s . 

Fig. 2. Absorpt ion and dispersion coeff ic ients o f nitrogen 
in the second approx imat ion (solid l ines) ; the open circles 

represent experimental results taken f r o m Re f . 28. 

The numerical results obtained from the solution of 
Eq. (4.12) with the values (4.13) are shown in Fig. 2, 
where they are compared with the experimental 
data of G R E E N S P A N 2 8 . Agreement is excellent for 
r > 1.5 for the absorption and again over the whole 
measured range for the dispersion. 

c) Rough Sphere Gas 

A calculation was also made for a gas of rough 
spherical molecules with a value for the dimension-
less moment of inertia * = 4 I\moz of 0.05, a value 
appropriate for CH4, e.g., considered as a rough 
sphere. For rough spheres, c ^ j k has the value 1.5 
in Eq. (4.12). The ratios of the relevant collision 
brackets for this case, are, in ^-dependent form, 

r 
Fig . 3. Comparison o f the dispersion coefficients for a noble 
gas (solid line), nitrogen (dashed line) and for a rough sphere 

gas with Y. = 0.05 (stippled line). 

Fig . 4. Comparison o f the absorption c oeff ic ients for a 
noble gas (solid line), nitrogen (dashed line) and for a 

rough sphere gas with x = 0.05 (stippled line). 



given by 29>30 

O 0 " 1 = 3 0 ( 1 3 * + 6 ) - i , 

ffi ffl]-1 = f (17« + 4) (13* + 6)-i , (4.14) 
[ I P [iool-1 = ( 2 5 / 2 ) ( 1 3 * + 6)"1. 
Gffl] ffl]-1 = ( 1 5 / 2 ) ( 2 * 2 + 2 * + i W 1 3 * + 

In Figs. 3 and 4, the dispersion and absorption, 
respectively, of the three cases considered in this 
work, i.e., noble gas, diatomic gas (N2) and rough 
sphere gas wdth k = 0.05, are compared. These 
figures show explicitly the influence of the presence 
and number of rotational degrees of freedom in 
sound absorption and dispersion. 

5. Discussion 

The phenomenon of sound propagation in pure 
gases, including polyatomic gases, has been treated 
from the point of view of the Waldmann-Snider 
kinetic equation which allows for inelastic collisions. 
Using a moment method in which the successive 
approximations are generated through the operation 
of the flow term on the preceeding approximation 
(the starting point is, of course, the summational 
invariants for the gas) sound absorption and dis-
persion have been calculated using no adjustable 
parameters and compared with the experimental 
results for the noble gases and for nitrogen. The 
method of solution has been shown to be valid in 
the low frequency or high pressure regime and, in 
this regime, the agreement with experiment is good. 
That the moment method should break down for 
high frequencies or low pressures is not unexpected 
since in the low density regime more and more ex-
pansion terms must be included in the truncated 
expansion scheme. Basically, this occurs because as 
the importance of the collision operator decreases, 
the flow term k • W becomes increasingly important 
with the consequence that many more expansion 
terms are coupled in. In the limit of a collisionless 
gas, an infinite number of expansion terms would 
be required to give a correct description of "sound 
propagation". This same breakdown of the moment 
method occurs in the description of other bulk 
phenomena, perhaps the best known being that of 
depolarized Rayleigh light scattering31 where a 
description of the Doppler-broadened line by this 
method would also require an infinite number of 
moments. 

An interesting feature of the general solution of 
the linearized Waldmann-Snider equation is the 
result that as the number density decreases (the 
parameter r is proportional to w/co) for fixed angular 
sound frequency co, the solution cp ceases to depend 
upon molecular collisions or the presence of internal 
states: this has the implication that for the para-
meter r sufficiently small, the sound absorption and 
dispersion should be the same for both noble and 
polyatomic gases. In fact, this is illustrated in Fig. 5 

Fig. 5. A comparison o f sound absorption and dispersion 
for a noble gas calculated in third approximat ion (solid 
line) with that for nitrogen, calculated in second approxi -
mation (dashed line) while the open circles and triangles 
represent experimental results: O : experimental points 

f rom Ref . 6. A e x p e r i m e n t a l points f r o m Re f . 28. 

where these quantities have been plotted for noble 
gases in the 3rd approximation and for N2 in the 
2nd approximation together with the measured 
values of G R E E N S P A N 6 ' 2 8 . A S can be seen, the ex-
perimental points are, within experimental ac-
curacy, coincident for r < 1.5. The effect of col-
lisions and internal states is reflected in the decrease 
of the absorption from a constant value for r > 1.5. 
Further, note that the presence of internal states 
in N2 has resulted in the theoretical curve obtained 
in 2nd approximation giving as good a description 
of the experiment as the noble gas third approxima-
tion. This is likely due to the introduction of the 
bulk viscosity in the case of N2: when there is a 
bulk viscosity present, it dominates sound ab-
sorption and is itself included in the second ap-
proximation procedure. 
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