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The well known formulas for computing the partial molar functions from a given mean molar 

function are treated as deferential equations for computing the mean molar function from any 
given partial molar function. Solutions do not depend on the number of components, but only 
on the choice of three indices: the index d of the dependent mole fraction xa to be eliminated 
prior to any computations, the index j of a pivot mole fraction xj and the index i of the partial 
molar function yi. An arbitrary number of additional mole fractions of the other components 
safe xa may be linked to the pivot mole fraction Xj. The simple solution: y = (xj — %) i y , yi = 
(xj — öij)2 Xfj and Xif = d Itj/dxj holds for an arbitrary number of components, if the (c — 2) 
mole fractions xi safe xa and xj are transformed to new variables found from the auxiliary equa-
tions. Three different cases arise if either i = d, i = j or i =(= d, i =|= j is chosen. Formulas for the 
three sets are provided. As an example a simple interpolation formula for ternary systems is 
discussed. 

Previous experimental results on heats of mixing 
AM of liquid B-metal binary systems have been 
evaluated and discussed, using a so called ^-function 
[1 ,2] 

ÄM = aj2(l — z2)£ (1) 

as suggested by Wagner [3]. This convenient 
method however failed in subsequent studies in 
ternary systems [4]. We had to apply rather 
intricate computer procedures to find formulas for 
ÄM and the three partial molar heats hiM. Therefore 
we tried to find simpler methods to process data in 
ternary systems with simple programmable desk 
calculators. 

A thorough study of pertinent formulas and 
methods seemed to indicate a missing link in the 
theory of such functions: Experimental values of 
excess chemical potentials FI,^ = RT In (y* = 
activity coefficient) in binary systems usually are 
evaluated by integration of the so called Gibbs-
Duhem-equation [3]. In ternary systems integration 
is possible along particular paths of integration, e.g. 
X2IX3 = constant, as shown by Darken [3, 5, 6]. 
Another solution by Wagner [3] introduces besides 
X2 a new variable y = ns/(ni -f- W3) in the Gibbs-
Duhem-equation. Our previous attempts to find 
reasonable formulas by trial and error always 
rendered functions with quotients of mole fractions. 
Therefore we supposed some hidden reason for the 
efficiency of such quotients. 
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Trouble with such functions seems to have a 
simple reason: Extensive functions Y— Y(T,p, ni) 
are homogeneous functions of the first degree of the 
c independent mole numbers ni (c number of com-
ponents). Therefore we get with Euler's equation 

Y = ^myi with the definition 
yi = (3 F / 8 » , k ^ l (1) 

and the more useful differential 

dY = ^yldnl (2) 

with a short proof. (By partial differentiation to 
some njc of (1) we get: 

2 n i (tyi/dnk) = 0 , 
1 

therefore too 

2 2 ni fiyil&rik) • dn* = 0 and k I 
^nidyi = 0. 
1 

So the differential of (1) renders (2). The differentials 
dyi are more versatile, because they can be ex-
panded with any set of appropriate variables of 
composition.) 

In practice, however, the mean molar func-
tions y = y(T,p,xi) are studied, because the number 
of independent variables of composition is reduced 
to (c — 1) because of 

2 xi = 1 and = (3) 

In this way labour with experiments and com-
putations is reduced by an order of degree. But this 
results inevitabily in more trouble with formulas. 
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First we have to find how to deal with the new 
functions and variables. Of course we can derive at 
once from (1) by division with the sum of number 
of moles n 

y = ^ x i y i and dy = y y t d x i (4) 
(because from 2 n i tyi= too ^ x i tyi= 0)-

Such "symmetric" formulas, however, still com-
prise a dependent mole fraction xa, that may be 
choosen arbitrarily from the c mole fractions in c 
different ways, and has to be eliminated prior to 
any computations by 

xa = 1 — x i a n d dxa — — (5) 

by separation of xd in (3) (the symbol ]> indicates, 
that the term with the index d has been omitted 
from the sum). From (4) we get 

y = XdVd + xi Vi a n d 

dy = yd xd + ^{d) Vi &xi (4 a) 

and using (5) finally 

y = yd + 2(<i) xi & ~ y*) and 

dy = ^(d) _ yd) dxt . (6) 

Clearly the structure of such "asymmetrical" 
formulas will be determined by the choice of the 
index d of the dependent mole fraction x^, to be 
eliminated prior to computations. From (6) we 
finally get the partial derivatives of the new func-
tion y with respect to the new variables xi: 

{dylfai)T)PtXm = yi-yd, m =M (7) 

only rendering (c— 1) equations for the unknown 
c functions yi. Therefore we have to use (6) as 
additional equation, rendering 

ya = y - ^ d ) x i { ^ y l ^ i ) (8) 
as shown by Haase [7, 8]. 

Clearly the relations between y and the yi are 
much more intricate than the simple formulas (1) 
for Y and yi in terms of the mole numbers rti. 

Sometimes in physics the functions and variables 
found at first sight are not the most efficients ones 
with reference to the mathematics involved, as 
known from theoretical mechanics. Therefore we 
tried to find other functions and variables, render-
ing at least one partial molar function as a simple 
derivative of a function of the molar function. 

This problem will be solved by treating the 
equations for computing the partial molar functions 
by partial differentiation of the given mean molar 

function as partial differential equations for the 
mean molar function, if some partial molar function 
yi is given. As new function we get the so called 
integral control function I i j in terms of a pivot 
mole fraction Xj and (c — 2) new variables qij, rij , 
of f i j , depending on the three different possibilities 
of choosing i = d, i = j, or i 4= d, i 4= j. The new 
variables, qij for quotient, r/y for ratio and f i j for 
fraction, are quotients of mole fractions, as pre-
sumed before. The new functions and variables 
will be treated as shown with y in terms of the x 
with formulas (4 a), (6), (7) and (8), starting with 
the differential dI i j . Of course we shall meet the 
same trouble, because in this case too only (c— 1) 
partial derivatives can be found. This is only a 
question of the number of independent variables 
and not of the kind of variables. But we can find 
one equation rendering a function of a partial 
molar function as a simple partial derivative of I i j 
with respect to the pivot mole fraction Xj. 

Later applications are possible without going 
through the subsequent expositions. Some simple 
applications and an interpolation formula for 
ternary system are provided on the last pages. The 
practical application has to be left to subsequent 
papers in view of the amount of computations in-
volved. It will take some more papers to deal with 
the more intricate case of systems with electron 
transfer [4]. 

1. Control Functions 

From (7) and (8) we get a formula for any partial 
molar function [4] 

yi = y - to _ <*«) (9) 
using the Kronecker-symbol du = 0 for i =)= I and 
<5« = 1 for i = l. For any pure component i, given 
by Xi= 1, all other xi = 0, always yt = y holds. 
Therefore, any factor in the sum of (9) has to 
become zero for Xi = 1, all xi = 0. By this reason 
we get factors xi, but (xi — 1) in (9). In the binary 
case we get with xj = x\ or xj = x2 the general 
formula 

Vi — y ix] öij) (dy/dxj). (10) 

We first tried to get as simple functions and 
symbols as possible for binary systems. Obviously 
the structure of the formulas only depend from the 
indices i and j. Therefore the following functions 
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and symbols were choosen [9, 10] 
y = — [Xj — dij) Ii) and 

Vi = (X) — dij)2 Xij. (11) 

Putting (11) to (10) the simple partial differential 

Xi} = (8 Itj/dxj) (12) 

results. X i j and I i j were called control function and 
integral control function (german: Formfunktion), 
because such functions carry the information on a 
particular function in some system, and control the 
shape of the graphs. 

Darken [6] recast (10) to 

Vi 
(Xj — dij)2 dxj \ (Xj — dij) 

-y 
(13) 

and called the left side function X i j "alpha" and 
"beta" function, but seemingly did not pay par-
ticular attention to the function on the right side. 
The integral control function I i j is related to the 
apparent molar functions [9]. Clearly Darken's 
formula (13) is identical with our formulation (12), 
but obviously could not be applied to the multi-
component case given by (9). 

2. The Binary Case 

Arranging (10) to 

(Xj — dij) y' — y= — yi (14) 

we get a simple differential equation to compute y 
from any given yi with the solutions 

y = — (Xj — dij) C 

dC/dxj = ytKxj - dij)2 . (15) 

Clearly C = I i j , and the functions I i j and X i j are 
solutions of (14). 

To get uniform symbols (1) has been replaced by 

y™=-Xj(Xj-l)Xj (16) 

but the control function Xj is not a solution of (14) 
and therefore only useful in binary systems. 

3. The Multicomponent Case 

Arranging (9) we get a partial differential equation 

2 (xi - hi) (ty/fai) = y-yi (17) 

for computing y from a given partial molar fun-
tion yi. Lagrange's auxiliary equations, for con-

venience written in reverse order 
d y cLci &X2 

y — yi Xi — da x2 — di 2 
dxr. 

Xc — die 
(18) 

suggest the arbitrary choice of a pivot mole frac-
tion Xj. (Of course, in (17) and (18) the dependent 
mole fraction xa is absent. If <Z= 1, d = 2 or d = c, 
such terms have to be omitted.) 

Connecting first dy and dxj we arrive at 

(xj — dij) dy = (y — yt) dx} (14a) 

identical with (14). The solutions (11) and (12) of 
the binary case hold even with an arbitrary number 
of components, if the following solutions for the 
other (c — 2) independent mole fractions xi are 
taken in account. For all other mole fractions xi 
except xa and Xj we find simple proportionality 
from 

(xi — da) = k(xj — dij). (19) 

After fixing the indices d and j of Xd and Xj obviously 
three different sets of solutions arise by choice of 
the index i of the partial molar function yi. 

3.1. The qij-set with i = d 

Taking yi as yd, the Kronecker-symbols in (18) 
and (19) wall vanish rendering from (19) 

xi = qij Xj . (20) 

The limiting values of the so defined new variables 
qij are qij = 0 for xi = 0, but for Xj = 0 the qij 
become infinite in any subsystem not containing 
the component j. This may limit the practical use 
of this set. 

3.2. The rij-set with i = j 

Taking yi as yj the Kronecker-symbols dji will 
vanish, but of course djj = 1. From (19) follows 

xi = r i j ( l — X j ) (21) 

defining new variables rij with the convenient limit-
ing values rij - 0 for xi = 0, and rij = 1 for xi = 1. 

3.3. The fij-set with i =(= d, i =)= j 

When choosing the index i different from d or j, 
e.g. i = f, the corresponding mole fraction Xf will 
appear in (18) or (19) in a bracket (xf— 1), whereas 
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all other Kronecker-symbols will vanish. From (19) 
follows a new set of variables 
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4. The Differential d/, , 

(1 — Xf) = jf} Xj and xi = fij Xj . (22) 

Subsequent computations can be reduced by 
first assessing the differential of I i j (11) 

The fij will show the same limiting values as the qij, 
putting the same limitations on this set. 

d L j = 
y dXj — (xj — dij) dy 

(Xj — dij)2 

Inserting (6) and arranging we get 

d I i j = [ya + djj{yj — yd)] dxj + — yd) [xi dx} — (Xj — dy) ds;j 
{Xj — dij)2 

(23) 

(24) 

In the binary case, any xi = 0 and dxi = 0, we get 
again the solution (11) and (12). With three and 
more components obviously (24) has to be reduced 
by judicious choice of new variables to arrive at 
fairly simple expressions. Any set of new variables 
can be tested by inserting in (24). 

5. Formulas for the R-set 

According to 3.2 we put i = j and djj= i. 
Inserting (21) and 

dxi = (1 — Xj) drij — Uj dx} (25) 

wet get from (24) 

yj dXj + (Xj — l)2 (yi — yd) drij 
dljj = 

(Xj - I)2 

Defining the symbols 

/ Mjj 
dxi 

Xjj = Rij = 
07 j j 
dri l j jxj,Ticj 

(26) 

, f c = H , (27) 
3 /rij 

we get the formulas 

y} = (Xj — l ) 2 Xjj and yi~yd= Rtj. (28) 

Unfortunately we get only one simple formula for 
y j , when using the convenient variables rij. For 
all other partial molar functions we have first to 
assess yd by inserting (21) and (28) in (6), arranging 
to 

y = yd{ 1 — Xj) + Xj yj 
+ 2 t W > » r l j R l j ( l - X j ) (29) 

dividing by (1 — Xj), noting (3) and (28) and finally 
arriving at 

yd = Ijj -Xj{ 1 - Xj) Xjj - 2 « * ' » rij Rij . (30) 

Any other partial molar function besides y j and 
yd is found by 

yk = yd + Rkj '31) 

or fully 

yk = Ijj — Xj (1 — Xj) Xjj 

-Z(d'})(rij-dlk)Rj. (32) 

6. Formulas for the Q- and i'-set 

Proceeding in the same way we get the following 
definitions and formulas for use with the less 
convenient variables qij and fi j according (20) 
and (22) 

Xdj = 
07, dj 
CXi Qij 

07, dj <\ 

Xj2 Xdj , yi 

fylj )xj, qk} 

yd — Qij yd 

or fully 

yi = Xj2 Xdj — Qij , 
yj= — Id] — Xj{ 1 — Xj) Xdj 

+ 2«*-» qij Qij 
and for the T'-set 

Mfj 
tej //„ 

(33) 

(34) 

(34 a) 

(35) 

Xfj = F f j J ^ L \ 
\ Zfn L in 

Fu = 
dlfj_ 

yf = Xj2 Xfj , yd = Xj2 Xfj — Ff}, 
yi = Xj2 Xfj - Fn - Fij, 

(36) 

(37) 

yi = - hi + xAxj - ! ) x f j 
+ ( f f j - l ) F f j + Z(d'f'1)fijFv- (38) 

The functions I i j follow from the definition (11): 

y = — (xj — 1) Ijj, y = — Xj Idj, 

y = — Xj Ifj (39) 
substituting the new variables from the R-, Q- or 
T'-set for the (c — 2) mole fractions xi besides the 
eliminated xd and the pivot mole fraction Xj. 
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Formulas for the Q- and F-set are simpler, than for 
the .R-set. Therefore the Q-set may be useful, if the 
limiting behaviour of the variables qij for Xj = 0 is 
of no importance. The somewhat more complicated 
.F-set seems to offer no advantages at present. 

7. Examples 

Prior to computations in multicomponent sys-
tems some attention should be paid to the judicious 
choice of the indices d, i, j and I. Experimental 
data of some ternary excess chemical potential /jl 
may be processed by choosing i = 1 ,2 or 3. But 
then in view of the advantages of the variables rij 
we should prefer j = i to apply the J?-set. After 
fixing i and j = i, we are free to eliminate one of 
both remaining mole fractions as the dependent 
variable xa. Then the remaining mole fraction is 
the xi, to be eliminated by rij. Putting e.g. i = 3, 
we take x3 as pivot mole fraction Xj. Then we may 
eliminate x\ = xa, and take as remaining xi, to 
be replaced by r23 = #2/(1 — £3). In this way we get 
the indices i = j = 3, d = 1 and I = 2. (In systems 
with c components we get (c —2) different mole 
fractions xi and therefore as much different 
indices I.) The numbers of indices have to be put 
into the general equations of the i?-set, e.g. 
X"33 = /M3E/(1 — x3)2 and dl33/dx3 = X33. Keeping 
X2IX3 constant in Darken's method in ternary 
systems clearly points to variables of the Q-set. In 
view of (20) we have xi = x2 and x j = x 3 . As 
X2 = <72323, this method means to replace X2 by <723, 
and to keep <723 constant. This means too, to 
eliminate x\ as the xa- Wagner's variable 

y = nzKm + n3) - £3/(1 — x2) 

is related to the R-set by choosing j = 2, I — 3 and 
therefore d= l . I n viewof(21) we get £3 = 7-32(1 — X2) 
and y = 7-32 in our system. 

In ternary systems mean molar functions y can 
be represented by a power series expansion 

= x * k x 3 1 • ( 4 ° ) k I 
Obviously x\ = xa or d= 1. Using (9) the following 
formulas for the three partial molar functions are 
found 

!/I = 2J(1 — k — I) aki x2k xj , (41) 
k I 

= — k — l)x2x3-\- k x3] 
k I 

• akl X2k~1 X31'1 , (42) 

= — k — l)x2x3 + lx 2] 
k I 

• akt x2k~1 x3*-i. (43) 

In this case, the coefficients of y± are simple 
multiples of the coefficients aki of y. 

Choosing x3 as pivot mole fraction Xj, j = 3, and 
preferring the $-set for ease of computation we get 

X2 = ?23 x3 . (44) 

Putting (44) to (40) and dividing by (—x3) we 
get regarding (11) and (39) 

/13 = - 2 2 ?23* (45) 
k I 

and by differentiation with respect to x3 and <723 in 
view of (33) 

Z i 3 = 2 2 - k ~ l) a*i x*k + l~ 2 ' <46) 
k I 

Q23 — 2 2 ^ v™*'1 X 3 k + l ~ 1 • ( 4 ? ) 
k I 

Putting 113, X13 and Q23 in (34) and (35) and 
finally again substituting X2 for qz3x3 the formulas 
(41), (42) and (43) are obtained. 

8. A Simple Interpolation Formula for Ternary 
Systems 

The rather lengthy and tedious computations for 
assessing the matrix Aki in (40) from experimental 
data may be considerably reduced by first comput-
ing approximate data from the formulas for the 
binary subsystems using a simple interpolation 
formula. According to our experience with ternary 
metallic systems even simple interpolation formulas 
render about 90% of the experimental values. As 
the precision of such data only seldom approaches 
1%, the precision of the residue will at best 
approach 10%. Therefore a simple additional 
procedure for assessing a matrix for the residue will 
suffice as a rule. 

To assemble interpolation formulas for systems 
with c components from the formulas for the binary 
subsystems we have to use some additional indices 
to indicate different systems. Tentatively, — we 
have still to gather more experience —, the follow-
ing method is adopted: the numbers of the com-
ponents are indicated in an additional index. The 
first number is the index of the mole fraction not 
used in the formula. In subsystems without the 
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component d this will be another mole fraction 
than xa-

In a ternary system y123 means the formula for 
the mean molar function y in terms of and x$. 
y2Z is the formula for the binary system with the 
components 2 and 3 in terms of X3. 

Choosing x\ as the dependent mole fraction 
and X3 as the pivot mole fraction Xj, and finally 
putting X2 — T23 (1 — xs) according to (21) the follow-
ing simple formula 

y123 = y13 + r2s(y23 - y13) + (1 - * 3 ) 2y 1 2 (48) 

allows for linear interpolation between the binary 
systems (13) and (23), whereas the third system (12) 
is interpolated by multiplying with (1 — X3)2, as 
done previously by Kohler [10]. 

In y12 the variable x2 has to be substituted by r23 

to stay within the limiting values 0 and 1 of x2 . 
To get the formulas for the three partial molar 

functions the following procedure is applied: 
1. According to (39) we get by division with 

(1 - **) 

= HI + r 2 3 (I 2 l - Jg) + (1 - *.) y12 . (49) 
2. Differentiation with respect to and r23 

renders 

Z g 3 = Z g + 'as ( X U - Z g ) - y™ , (50) 

= f g - i g + ( ! - * » ) fo12)' (51) 

with (y12)' = d?/12/dr23. 
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