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Two-dimensional excitable media, for example the excitable version of the Belousov-Zhabotin-
sky reaction, are capable of forming spiral-shaped self-sustaining rotating wave patterns (rotors). 
In order to explain Winfree's experimental observation of an irregular "meandering" of the rotor's 
core region, we present a numerical simulation of a continuous, two-variable excitable medium 
in two space dimensions. Two phenomena occur: 1) an irregular motion of the rotor's core; 
2) a non-stationary peak inside the core region. Thus, "meandering" is obtained, together with 
a new phenomenon, the "peak". A sufficient condition for both phenomena is that the underlying 
(local) system be stiff, that is, admit two time scales for its approximate description. In this 
case, (1) the "reaching distance" of diffusion is small as compared with the core's radius, and 
(2) rotation symmetry of the core implies a gradation in local frequencies (increase toward the 
center), supposing radial decoupling. We propose that both constraints act together to induce 
a spontaneous breakdown of rotation symmetry under an increase of stiffness. Immediately (or 
soon) thereafter, the core is no longer synchronized by the wave circling around it; instead, excita-
tion from the surrounding wave penetrates the core along a new path from time to time, causing 
a non-repetitive short-cut. 

Introduction 

Excitable media consist locally of excitable 
systems (monoflops) which by a relatively small 
exogeneous perturbation can be caused to respond 
with a large-amplitude excitation, followed by a 
recovery process which re-establishes excitability. 
Under spatial coupling, a sufficiently large local 
region, when excited, causes a spread of excitation 
through the medium. Winfree [la], following Zeeman 
[2], called the waves of excitation so formed "trigger 
waves". Heart tissue, with the pace-maker system 
removed, provides a classical example (see van der 
Pol and van der Mark [3], Wiener and Rosenblueth 
[4], Swain and Yanagita [5], Balakovsky [6], and 
Krinsky [7]). A quantitative description of trigger 
waves as "moving catastrophes" [8, 9] was recently 
given by Feinn and Ortoleva [10]. 

Two-dimensional excitable media are known to 
support spiral-shaped wave patterns that regenerate 
themselves. These were, in a discrete state model, 
termed "reverberators" [6] and, in continuous 
systems, called "spiral wave-reverberators" [11] 
and "rotors" [12], respectively. In the cardiological 
literature, the term "circus movement excitation" 
is customary (cf. [13]). 

The spiral has in its outer region approximately 
the form of an involute around a circle, circling 
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around a core [14]. In most numerical studies, a 
rotation-symmetrical situation was found. However, 
Gul'ko and Petrov [15] showed that the position of 
the core region maybe drifting, and Karfunkel [16] 
pointed out that a "slow drift" may be expected in 
general. Winfree's [1, 8] experimental observation 
of a quite irregular, "meandering" behavior of the 
core (in a thin layer of the Z-reagent) came as a sur-
prise. A possibly analogous observation in a piece 
of heart tissue was made by Allessie et al. [13], see 
[12]. 

In the following, a digital numerical simulation 
reproducing the phenomenon is presented and a 
qualitative explanation attempted. 

Numerical Results 

The following equations were simulated: 
xt = D1 V2x -f a + bx — cy x/(x + K) — dx2 , 
yt = Z)2 V2y + n (x — e y). (1) 

The corresponding local system (Di = = 0) has 
been indicated before as a simplified model of the 
Zhabotinsky reaction [17, 18]. The equations 
were run in the monostable version, that is, the 
nullclines had the form shown in Figure 1. The 
system was started with a spiral-inducing initial 
condition (Figure 2). After a spiral had developed, 
the diffusion constants were readjusted to obtain a 
convenient frame. A "stationary" regime was 
obtained using Di = 0.1, D2 = 0. At these param-
eter values, the spiral was allowed to rotate about 
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Fig. 1. Nullclines of Eq. (1) in concentration space (at 
D\ — D2 = 0). Unstable portion dashed. Parameters: 
a - 0.4, b -- 0.6, c — K — 1, d = 0.04, e = 2.28493, 
H = 1/3000. Axes: 1 ... 3.5 for a; and 0 ... 15 for y. 

Fig. 2. Initial conditions chosen for Equation (1). D\ = 
0.02, D2 = 0. Mesh size: 0.02 length units. Whole area: 
unit square. Region 1: near steady state concentrations 
(6.9, 3.0) for (x,y); region 2: refractory (10, 2); region 3: 
excited (0.2, 3). 

four times (till i = 5.15). A typical plot obtained 
thereafter is shown in Figure 3. 

Figure 4 shows the corresponding computer 
printout for x (using five grayness values (concen-
tration ranges)). One level line of the wave front 
(in the region of the steepest slope of the first 
variable) is emphasized. Thirty plots of this type 
were obtained, ten in intervals of 0.025, from t = 5.15 
to t = 5.4, twenty in intervals twice as long, till 
£ = 6.4. 

Figure 5 shows a pair of subsequent level lines. 
The intersection point of two such lines, separated 
by a short time interval, approximates the "point 
of inflection" (point q of Gul'ko and Petrov [15]) 
which separates the region of active propagation 
(bold lines) and the region of local recovery, that is, 
passive propagation (broken lines in Figure 5). 
This point has been chosen for convenience. If the 
asymptotic regime were rotation symmetric, point q 
would have to be either stationary or confined to a 
circular movement. 

Entering all subsequent positions of q into one 
picture, a meandering movement of the core region 
is found: see Figure 6. The effect seems to be real 

Fig. 3. Concentration profiles of x and y at time t = 6.40. 
Note the "peak" in the second variable. Numerical simu-
lation of Equation (1) with the parameters of Figure 1 
and Di = 0.1, D2 — 0 (see text), using an integration 
routine based on the ADI Crank Nicolson algorithm (Kar-
funkel [16a]). The simulation program [16] was run on a 
CDC 3300 and a TR 440 in the Computing Center of the 
University of Tübingen. 

in spite of the numerical approximations involved 
(finite mesh size; finite time steps; finite area). 

Figure 7 shows the trajectory in local phase space 
of an arbitrarily picked point in the core region. 
The trajectory is not closed. 
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Fig. 4. Computer printouts of the kind used for the sub-
sequent Figures (where only x will be used). The two 
pictures shown correspond directly to those of Figure 3. 
One level line in the x-plot is emphasized. 

Fig. 5. Two subsequent level lines. They correspond to 
times t = 5.375 and t = 5.4, respectively. The arrows 
mark the direction of rotation, q = intersection point 
(see text). 

Fig. 6. Meandering of subsequent positions of point q (as 
defined in Fig. 5), from time t = 5.15 to time t — 6.4. 
Solid line: time step size At — 0.025; dashed line (starting 
at * = 5.4): At = 0.05. Axes: 0.46... 0.64 (horizontal) 
and 0.32 ... 0.5 (vertical). 

Fig. 7. Trajectory in local concentration space, applying 
to the point (0.54, 0.38) in real space. Start: t — 5.15, end: 
t — 6.4. 1, 2, 3 — successive cycles. 

A second series of simulations with a different 
initial condition and slightly different diffusion 
coefficients yielded similar results. 

A Proposed Explanation 

A complete understanding of core behavior in 
two-dimensional 2-variable excitable systems with 
fast relaxation has yet to be obtained. A multiple 
time scales approach (cf. [10]) would be desirable, 
but is so far applicable only outside the core region. 
This is because the wave has to be assumed to 
propagate into a region with invariant excitability 
properties (so that the velocity of propagation 
becomes a constant calculable as an eigenvalue of 
the scaled equation [10]). 
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Fig. 8. Trajectories of a representative sample of points in 
real space, projected into phase space, obtained in a non-
stiff system. (Winfree [12], part of Figure 17 c.) If fi in 
Eq. (1) is increased to a value of 0.03, for example, an 
analogous picture is obtained in place of Figure 7. 

Winfree [19, 12] observed that the trajectories 
in local phase space are all closed in the core region 
of a non-stilf system, forming a smooth concentric 
set when the behavior at all local points is entered 
into the same picture: Figure 8. Extremely stiff 
systems, on the other hand, can — by local coupling 
— hardly be forced into the neighborhood of the 
unstable branch of the fast nullcline. Therefore, the 
above structure is not likely. Nonetheless, something 
which looks like a set of concentric narrow windows, 
all with approximately the same height (z-ampli-
tude), is possible. Reason: large changes of gradient 
over short distances, if present, can induce a local 
system to switch while still in a relative-refractory 
state. This is evident from the local formulation of 
Eq. (1), which reads 

x = (p-\-a-\-bx — cyxl(x -f K) — dx2 , 
y = /u(x — ey). (2) 

If op, the locally forcing flux, is strongly negative, 
the lefthand nullcline of Fig. 9 applies. The switch-
ing threshold for a transition toward the lower state 
is displaced to the left; and vice versa for positive 
fluxes (Figure 9). Thus, two different nullclines, one 
displaced to the left and one to the right, contribute 
to the formation of the sides of the "windows"; see 
Figure 7. From the point of view of the undisplaced 
nullcline (compare Fig. 1), the transitions give the 
impression that a region seemingly strongly resis-
tant to excitation, is being "tunneled through". 

Slower movement in space unavoidably occurs 
inside of a rotation symmetric core region. Slower 
movement, however, leads to steeper gradients and 
curvatures — and hence to the "tunneling" described 
above. 

One possible way to verify whether there is 
indeed a slower motion and an increase in tunneling 
inside a rotation-symmetrical core, is to look at 
cyclic one-dimensional systems of small circum-
ference. Simulating excitable rings of different 
sizes, we obtained cycling waves which in local state 
space corresponded to "windows" of differing widths 
[20]. In the smaller rings, velocity of propagation 
was reduced and angular velocity enhanced; 
frequency was increased. The rings were too short 
to support a cyclic wave when triggered in the usual 
way; that is, they corresponded to the internal 
region of the core. 

That more "internal" cyclic motions should have 
a higher frequency than more external ones follows 
also from Figure 9: The frequency of each motion 
along a "window" is determined by its width, that 
is, the y-amplitude, since the vertical motions are 
fast. So if there are any "more narrow" paths, they 
are bound to have a higher frequency [21]. This 
tendency toward faster rotation inside of a sym-
metric rotor is going to be enhanced with increasing 
stiffness. 

There is another (synergistic) effect which comes 
into play: with increasing stiffness the spatial 
"reaching distance" of diffusion (as compared with 
the core diameter) goes down, due to the occurring 
relative compression in space of the high-curvature 
zones (compare the flat plateaus and the steep 
descents in Figure 3 a). For the core diameter grows 

Fig. 9. Nullclines of Eq. (2) for 3 different values of the 
local flux cp. Parameters and conventions as in Figure 1. 
Arrows = displaced transition thresholds. Note that the 
displaced nullclines apply in the original system (Eq. (1)) 
only to zones of high curvature in the x-concentration 
(that is, to the regions of the cliffs in Figure 3a). 
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with 1 \fi while the local conpling remains nuchanged. 
Synchronization has to be mediated by diffusion, 
however. 

Both effects taken together mean that under an 
increase of stiffness (that is, decrease of ju) a break-
down of rotation symmetry is bound to occur — 
somewhere in between the situations depicted in 
Figures 8 and 7. 

The special properties of the type of symmetry 
breaking thus predicted have yet to be studied. 
Winfree's [12] topological method may prove 
helpful (although in this case Di = is required, 
a situation which has yet to be simulated). We con-
jecture that a "scrambling" of trajectories in local 
phase space occurs at — or soon after — the onset 
of instability. Figure 7 numerically supports this 
view. 

Discussion 

Our results appear to reproduce Winfree's [1,8] 
experimental finding of meandering. 

Gul'ko and Petrov's [15] early analogue com-
puter studies of a 3-variable excitable system [22] 
in a sense foretell our results: there, point q also 
was not stationary, but made a slowly drifting, 
otherwise "circular" movement (see the pictures in 
[15]). Winfree's experiment was nonetheless neces-
sary to draw attention to the possibility of an even 
more complicated behavior. 

One special feature, present in the above simula-
tions, has apparently not been noted before in 
chemical or computer experiments: the "peak" of 
y visible in Figure 3 b. It is present in the core re-
gion for most of the time, and its movement ap-
pears to be irregular. We interpret it as a visible 
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