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A detailed bifurcation analysis of the reaction-diffusion equations representing the trimolec-
ular model of Prigogine and Lefever f 'Brusselator") is performed. The model considers also the 
diffusion of the initial component. The homogeneous solution to the problem cannot exist and 
the bifurcation analysis must be performed numerically. There are two ways of possible 
branching, either the basic branch will be followed or branching f rom an isolated branch may 
occur. In both cases, the branching is of the type symmetric -* asymmetric -» symmetric, etc. For 
higher dimension of the system a topologically interesting isolated branch of asymmetric solu-
tions was discovered. 

1. Introduction 2. Governing equations 

Interaction of diffusion and reaction processes is 
supposed to explain the formation of structures in 
living organisms. The idea of a structure emerging 
as a certain sequence of instabilities was proposed 
by Prigogine, who used a simplified model, fre-
quently in the literature referred to as the "Brussela-
tor" [1], Recently different reaction rate schemes 
have been studied [2 — 5]. The model of the reac-
tion-diffusion process has been constructed in such 
a way that a homogeneous steady-state may exist. 
Under certain circumstances the homogeneous 
steady state becomes unstable and a spatially non-
uniform steady-state emerges. 

A more realistic case of a diffusion-reaction 
process includes also diffusion of the initial compo-
nents in the system [6, 7], Diffusion of initial com-
ponents preclude the existence of a homogeneous 
steady state, and only non-uniform steady states 
result. Mathematical analysis of this situation is 
much more difficult than that performed for the 
homogeneous steady state situation. Since the 
homogeneous steady state does not exist, the anal-
ysis of the process must be performed completely 
numerically. 

In this paper we are going to analyze the effect of 
bifurcation on the pattern of evolving steady states. 
Different ways of emerging new solutions are de-
scribed. 
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In this paper we consider the one-dimensional 
reaction-diffusion equations proposed by Prigogine 
and Lefever [1]. The model corresponds to a single 
trimolecular scheme: 

A+± X , 2X+Y+±3X, 

B + X Y + D , X<± E. 

It is assumed that all forward kinetic constants are 
set to unity and the backward reaction rates are 
neglected. The governing equations describing the 
reaction and diffusion are: 

dA d A 
dt dz2 

8 B d2B 
= -BX+Ds—y a t 

rs y 
= A + X2Y-{B+ \)X+D> 

dt 

aY , a2Y 
— =BX-X2Y+Dy—y. 81 dz1 

d2X 

(1) 

(2) 

( 3 ) 

( 4 ) 

Fixed boundary conditions are considered: 

/ > 0: z = 0, L ; X=XÜ, Y= Y0, 

A = A0, B = B0. ( 5 ) 

3. Numerical solution 

The steady state equations ( l ) - ( 5 ) represent a 
nonlinear boundary value problem for ordinary dif-
ferential equations. We used the Stormer-Numerov 
finite-difference scheme to approximate the dif-
ferential equations [8]. The set of resulting nonlinear 
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finite-difference equations having band structure 
was solved by the Newton method. Details of the 
implementation of this technique to the diffusion-
reaction problem may be found elsewhere [8]. The 
particular branches in the bifurcation diagram [cf. 
Fig. 11] were calculated by the continuation techni-
que [9]. For continuation purposes, we adopted a 
sequential use of the Newton method. Near the 
limit points, where the Jacobian matrix is singular, 
an arc-length continuation was used [10]. 

An approximate location of singular points results 
during the continuation process; in the vicinity of 
such points the Newton procedure exhibits poor 
convergence properties. For an exact location of the 
singular points, a number of algorithms was devel-
oped [11 — 13]; apparently the Seydel algorithm [11] 
is superior for this type of problem. 

Fhe calculation of the bifurcation diagram re-
ported in this paper is much more difficult than the 
calculation performed by Kubicek et al. [2, 3, 14]. 
These authors could make use of the primary 
bifurcation points which can be calculated analyti-
cally. For our particular problem such points do not 
exist and we had to continue the solution starting at 
very low values of the parameter L. All calculations 
were performed on the IBM 3033. 

4. Results of continuation 

Numerical computations were performed for the 
parameters which were used both by Herschkowitz-
Kaufman [6] and by Kubicek et al. [3, 14]: 

A = 2, £ = 4 . 6 , Dx= 1.6 • 10~3 , 

D ) = 8 • 1 0 - 3 , 0 ^ = 0 . 1 , DB=cc. 

The results of continuation which are drawn in 
the bifurcation diagram "L versus Y' (0)" are dis-
played in Figures 1 — 10. In these figures the 
branches of symmetric profiles are drawn by a 
dashed line while the branches of asymmetric 
profiles are drawn by a solid line. 

In Fig. 1, the branch a of symmetric profiles is 
shown. We can notice that this branch "corre-
sponds" to the branch of homogeneous profiles (i.e. 
to the " thermodynamic branch") for the case 
D4 —> oo. For low values of L (L < 0.08) the branch 
a is almost identical with the thermodynamic 
branch. We are going to call this branch the basic 
branch. There are four limit points and four bifur-
cation points (F , , E]. J , , J2) at the basic branch. 

20 -

y'(0) 

-20 

Fig. 1. Bifurcation diagram, branch a (symmetric solu-
tions). 

tions (branch f)-

tions (branch g). 
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Fig. 4. Branch g of symmetric solutions having four bifur- Fig. 7. Bifurcation diagram, branching of asymmetric solu-
cation points C 2 , D | , D 2 , F 2 . tions (branch e). 

y'(0) 

Fig. 5. Bifurcation diagram, branching of asymmetric solu- Fig. 8. Bifurcation diagram, branching of asymmetric solu-
tions (branch c). tions (branch j). 

y'(0) y'(0) 

Fig. 6. Bifurcation diagram, branching of asymmetric solu- Fig. 9. Bifurcation diagram, branching of asymmetric solu-
tions (branch b). tions (branch d). 

branch g 

branch c 

•branch d -branch_g_ 
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Fig. 10. Isolated branch of asymmetric solutions (branch 
k, k'). 

At the bifurcation point F] a branch of asym-
metric solutions / emerges (see Figure 2). At the 
branch / ' there is a bifurcation point F2 which gives 
rise to a branch g of symmetric solutions (see 
Figure 3). In Fig. 4 four bifurcation points, C 2 , D j , 
D 2 , and F 2 , occurring at the above mentioned 
branch g are depicted. At the point C2 a bifurcation 
occurs and a branch c of asymmetric solutions 
results (see Figure 5). From the point Q on the 
asymmetric branch c a closed loop of symmetric 
solutions, branch b, emerges, cf. Figure 6. This 
isolated loop, which we have shown recently [7] to 
be triggered by an imperfect bifurcation mecha-
nism, has one more bifurcation poing E2 . Bifurca-
tion of asymmetric solutions on branch e will lead 
us back to the basic branch a. 

Table I. Approximate 
coordinates of bifurcation 
points. 

Bif. points Value of L 

F, 0.2667 
F2 0.9151 

C, 0.1655 
C2 0.2986 

E, 0.2954 
E2 0.1565 

J, 0.5883 
J2 0.5892 

D| 0.3537 
D : 0.4158 

-20 -

Fig. 11. The complete bifurcation diagram (• • • symmetric 
solutions, - asymmetric solutions). 

From the bifurcation points D | and D2 on the 
branch g of symmetric solutions a branch of asym-
metric solutions d is created, see Figure 9. Bifurca-
tion points J | and J2 occurring at the basic branch a 
of symmetric solutions give rise to a closed branch j 
of asymmetric solutions, cf. Figure 8. 

The branches of asymmetric solutions mentioned 
so far possess one typical property, namely the de-
rivatives Y' at z = 0 and z = L occur at the same 
curve. For instance the mirror symmetric profiles 
23', 24', and 23, 24 create a different part of the 
same branch (cf. Figs. 5 and 12). Evidently, for this 
particular case after calculating a given profile we 
have two points on the same branch in the bifurca-
tion diagram (e.g. 23 and 23' in Figure 12). 

Different topological properties can be observed 
for a branch displayed in Figure 10. Plotting deriva-
tives F'(0) and Y'(L) versus L gives rise to two 
isolated closed branches k and k'. The same points 
at to different loops k and k' correspond to the 
same profile. Apparently the branches k and k' are 
isolated; we have not been able to find any singular 
point on them. 

The singular points which we have calculated in 
this study were (i) limit points (ii) limit-bifurcation 
points. 

A typical l imit-bifurcation point Fj is displayed 
in Fig. 2 (see also 9 in Figure 12). This point is a 
bifurcation point of the branch a of symmetrical 
solutions because asymmetrical solutions may 
emerge. On the other hand. F, is a limit point at the 
branch f of asymmetric solutions. At this point two 
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Fig. 12. Typical profi les at par t icular branches . 
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asymmetric (mirror symmetric) solutions collapse in 
a symmetric solution. 

The profiles at the bifurcation points are drawn 
in Fig. 12, cf. 9, 14, 18, 22, 26, 31, 33, 34, 38 and 44. 
The approximate coordinates of the bifurcat ion 
points are reported in Table 1. 

The number of possible steady states can be 
found in Figure 11. It is obvious that the only pos-
sibility of calculating all admissible solutions is a 

careful continuation analysis. Nevertheless, we can-
not be sure that we did not miss some isolated 
branches. 

Figure 12 contains a condensed information on 
the properties of particular profiles. A complete 
information on X and Y profiles may be found in 
[15], The material presented in Fig. 12 and in the 
bifurcation diagrams is self-explanatory. Let us 
notice at least the number of modes of the solution 
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o c c u r r i n g at t h e s y m m e t r i c b r a n c h a (cf. 1 - 8 in 
F i g u r e 12). 

V. D i scuss ion and conc lus ion 

T h i s p a p e r r e p r e s e n t s a f i rs t a t t e m p t in t h e l i t e r a -
t u r e to c a l c u l a t e t h e c o m p l e t e b i f u r c a t i o n d i a g r a m 
fo r r e a c t i o n - d i f f u s i o n p r o b l e m s w h e r e d i f f u s i o n of t h e 
in i t ia l r e ac t i ng c o m p o n e n t is c o n s i d e r e d . T h e r e a r e 
t w o poss ib le w a y s of b r a n c h i n g t h e s o l u t i o n s , e i t h e r 

t h e ba s i c b r a n c h a will b e f o l l o w e d or b r a n c h i n g f r o m 
t h e i so la ted b r a n c h b m a y occur . In b o t h cases , t h e 
b r a n c h i n g is of t h e t y p e s y m m e t r i c —> a s y m m e t r i c —• 
s y m m e t r i c . Bo th w a y s of b r a n c h i n g a r e c o u p l e d b y 
t h e b i f u r c a t i o n p o i n t F 2 . 

F o r h i g h e r v a l u e s o f L a t opo log i ca l l y i n t e r e s t i n g 
i so la t ed b r a n c h of a s y m m e t r i c s o l u t i o n s ( w i t h o u t 
s i n g u l a r p o i n t s ) w a s d i s c o v e r e d . W e m a y e x p e c t 
s o m e n e w d y n a m i c p r o p e r t i e s of t h e sys tem at th i s 
b r a n c h . 
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