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The method of Unrestricted Harmonic Balance (UHB) as exposed and applied to purely t ime-
dependent systems, stiff systems, and chemical waves in the preceding 3 papers is extended to the 
case of transcendental functions. So, e.g., exponential functions even in mass action kinetics 
systems occur, if a wider range of temperature is considered as is the case in continuous stirred 
tank reactors (CSTR). Here the reaction heat is removed by heat exchangers, but since the 
volume is in most cases considerable, the system cannot be kept strictly isothermal and 
instabilities are known to arise. Here the oscillatory case is treated with the method of UHB. 

1. Introduction 

In paper I of this series [1] the method of UHB 
was introduced and demonstrated for typical ex-
amples of t ime-dependent periodic kinetic systems 
(chemical oscillations). The principle of this method 
is that periodic state variables can be expressed as 
Fourier series, e.g. 

X OC 

-V ( / ) = -V + Z v o C O S ( / C 0 ' ) + X Vvi S i n ( / 0 J ' ) ' * 1 ) 
. / = ! 7 = 1 

As is known, the products of sine- and cosine-func-
tions are again sine- and cosine-functions so that 
state variables of the form (1) preserve their group 
property under multiplication (under addition triv-
ially anyhow). In practical applications the Fourier 
series have to be truncated at some highest harmon-
ic. say N. so that each state variable is represented 
by a (2/V + 1 )-dimensional vector and the product, 
the complicated formulas of which were derived in 
[1], can be interpreted as a particular vector 
product. 

In paper II [2] it was shown that this method even 
works for stiff differential equations and in paper 
III [3] the method was applied to running and 
standing chemical waves, i.e. to partial differential 
equations in time and space. 

Reprint requests to Prof. Dr. F. F. Seelig. Institut für 
Physikalische und Theoretische Chemie. Auf der Morsen-
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As was explicitly stated in paper I the only 
realistic non-linearities in chemical reaction systems 
with mass-action kinetics are products of concentra-
tions, to which the product algorithm can be ap-
plied, if necessary repeatedly. This is true for iso-
thermal systems; this assumption in turn is fairly 
well fulfilled in small systems in biochemistry or 
laboratory chemistry, because here the turnover is 
so small that the removal of the reaction heat is no 
problem. Or stated in another way: since heat pro-
duction is proportional to volume and therefore 
a / 3 , if / is a typical length parameter of the ex-
tension of the reaction vessel, and since the heat 
flow occurs through the surface a /2, the tempera-
ture difference between inside the vessel and some 
temperature bath outside can be easily kept arbi-
trarily small for small systems. But for bigger plants 
as they occur in technical CSTRs, special heat ex-
changers have to be provided and nevertheless a 
considerable temperature change can basically be 
expected. 

Thus temperature enters as an additional state 
variable and the rate constants can no longer be 
considered as being strictly constant, but are 
strongly temperature dependent, in the simplest case 
as expressed by the Arrhenius equation 

k(T) = A'o • exp ( - EJR T). (2) 

Here F a is the positive activation energy (per mole). 
F is the temperature. R is the universal gas constant. 
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Fig. 1. Plot of k/k0 = exp ( - EJR T) in the interval [0,1] 
vs. dimensionless tempera ture RT/EA in the interval [0,5]. 
The point of inflection with its coordinates is part icularly 
displayed. 

and k0 is the preexponential factor, which is seen to 
be equal to lim A:. In most cases the character-

istic temperature 0 = EJR is so high that at the con-
sidered temperature range the curve k(T) as shown 
in Fig. 1 is far from the saturation region, but is in 
the range of a dramatic increase with F. This gives 
rise to a kind of autocatalysis by the heat and is res-
ponsible for the known intrinsic instabilities of such 
systems [4], 

Since the exponential function ex can be ex-
pressed as an infinite series and is actually used in 
this form at its evaluation in computers, the ex-
ponential of some 2N + 1-dimensional state vector x 
of the form (1) (with N instead of oo) is of exactly 
the same series form, if each multiplication by x 
(to yield some higher power of x) is performed by 
application of the product procedure as given in 
part I. The truncation of the series should be con-
trolled by the expected or needed accuracy by a 
reasonable criterion. Of course each exponential 
needs several product formations and is therefore 
more time consuming than one simple product, but 
this is true for the exponential of some scalar in 
comparison with the product of two scalars in the 
same way. 

2. ODE-System for a CSTR with Heat Removal 
by a Heat Exchanger 

A CSTR for a simple first order reaction with 
removal of the reaction heat by a heat exchanger 
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was treated by Wicke [5], and Gilles [6] showed by 
application of the restricted harmonic balance meth-
od (truncation at N = 1, which is tolerable only for 
very small amplitudes) that for certain values of the 
parameters undamped oscillations (limit cycle oscil-
lations) can occur. As these equations are needed 
for the UHB treatment later on. the most important 
formulas are reproduced here, but in some of them 
other designations are introduced, which seem to be 
more convenient. 

Let be V the volume of the CSTR, r its volume 
flow velocity, c the concentration of the reactant 
inside the CSTR. c0 the concentration at its inlet, k 
the rate constant of the first order reaction, then 

dc r 
— = - ( c 0 - c ) - k c . ( 3 ) 

If in addition F is the temperature inside the CSTR, 
F0 the temperature at its inlet, Fc the temperature of 
the coolant, AH the reaction enthalpy, which is 
negative for an exothermal reaction, Q cp the heat 
capacity per volume unit, its actual change during 
the reaction being neglected, and xA is the heat 
flow through the surface (area) A of the heat ex-
changer per degree temperature difference, then 

d F {-AH) , r 
k c - — ( F - F 0 ) -

d t OCn V 
xA 

Q^V 
( F - F c ) . 

( 4 ) 

The last two terms of the right-hand side of (4) 
represent terms of heat removal and can be formu-
lated analogous to the term (v/V) ( c 0 - c) in (3) by 
defining a temperature F0c characteristic for the 
device as 

r q c p T q + XA Fc 
F(v — 

and zlFa d , 

A Fad = 

V QCp + xA 

i-AH) co 

QCN 

( 5 ) 

(6) 

which is the increase in temperature for an adiabat-
ic reaction at which F would be stationary. 

By introducing a dimensionless constant 

x.A 
M = 

<QCp 

(4) can be reformulated as 

d F _ A Fad 

dt c0 
k c - — {\ +M)(T-T0C). 

( 7 ) 

(8) 
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The steady state is characterized by the fact that (3) 
and (8) are equal to zero, defining steady state con-
centration css and steady state temperature Fss and 
by means of (2) the steady state rate constant kss by 

Css = co 

F« = 7a , + 

r + kmV' 

A T.dd kss V 
(r + kssV)( 1+//) ' 

and 
A'ss = A-0 exp ( - EJR F s s ) , 

(9) 

(10) 

( I D 

so that in a way analogous to (3) and (8) for the 
deviations Ac = c — css and AT=T—TSS from the 
steady state variables 

dAc r 
— zJ C + K cc Ccc 

dt V 

kc 

d AT r AT.dd / kc 
-—=--(\+M)AT -A:sscss 1--

dt V c0 \ ksscs 

where 

(12) 

(13) 

k/ks = exp [(EJR Fss) (A 7V( Tm+AT))]. (14) 

With the following abbreviations using dimension-
less variables and parameters throughout 

and 

£ = AT/TSS, 

>/ = Ac/css, 

t = kss t, 

z = EJRTss, 

ß=r/kssV, 

A Fad Css 

' ~ T co 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

we get finally 

dc/dx = — ß( \ + p) (21) 
- >'[1 - exp (x c / ( l + <;))• (1 + //)], 

dij/di = - ß rj + 1 - exp (x f / ( 1 + c)) • (1 + rj) (22) 

which have to be solved for given parameters x, ß, 
7, p. 

3. UHB-Treatment 

Equations (21) and (22) are basically identical 
with those of Gilles [6], save a) slightly different 

designations, b) that Gilles introduced the super-
fluent approximation exp (a £ / ( l + £)) % exp (a <;) 
• (1 - a c2). 

The term containing the exponential function is 
the only non-linearity and appears fortunately in 
both differential equations in the same way so that 
one purely linear equation can be formulated 

^ + y ^ L + ß ( \ + M ) Q + ß y r j = 0 . (23) 
dr d r 

The non-linear equation is 

dC 
dr + ß(\+ju) c 

+ y[l — exp (a £/( l + £)) • (1 + >7)] = 0 . 

(24) 

We set cci = 0 and choose frequency co, <f, 
and {C.vJ ( . /= 1 N) as the 2 N + 1 unknowns. 

From (23) we get 

rj=-((\+H)/y)Z, 

j co i,. +j co y /7,.+ ß( \ + Li) Cc;+ ß y rjc. = 0 , 

- j co cCi - j co y rjc. +ß (I + fi) cV) + ßyrjs = 0 

which yield with the abbreviations 

= (~ß(\+M) QCj ~ j « C.s)/y, 

as = ( j co cc-ß(\ +/0 
ßaq-j OJ aSj 

fh = 

}h, = 

ß2+fco2 

j CO ac, + ß as. 

ß2+j2co2 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

( 3 1 ) 

so that t] is expressed by Q. 
In (24) the exponential needs a special treatment. 
Since c 1, a MacLaurin expansion appears to 

be appropriate 

f ( x ) =f(0) + x / ' ( 0 ) + 4- x2f"(0) +... 
OC n 

- Z ^ / ^ H O ) . (32) 

Here 

.f(Q) = exp (a £ / ( l + c)) (33) 

and the factors f{n)(0)/n\ are constants which have 
to be determined only once and stored for iterative 
use. We get 

./Yc) = exp (x <;/( 1 + c ) ) , 

/ ' ( c ) = exp (a c / ( ! + £))• 
d + O ' 
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/ " ( C ) = e x p ( a c / ( l + c ) ) -

/ " ' ( c ) = e x p ( a c / ( l + c ) ) 

2 a 

O + c ) 3 (1 + c T 
+ -

6 a 6 a ' 

( l + c ) 4 ( l + c ) 5 ( l + c) 
(34) 

/ ( 4 ) ( c ) = exp (a c/( 1 + c)) 

etc. 

and 

- 2 4 a 36 a2 
+ 12a3 

(1 + c ) 5 (1 + c ) 6 ( l + c ) 7 ( i + o 1 

. / ( 0 ) - 1, 

./•'( 0) = a , 
"(4) 

/ " ( 0 ) = — 2 a + a 2 , 

f " (0) = 6 a - 6 a 2 + a3 

So 

with 

/ ( ' (0) = — 2 4 a + 36a — 1 2 a J + a < 

00

 /
(n)

(0) 
exp (a c / ( 1 + c)) = 1 + E C' 

/ (0) 
= X 

/= I 

and the recursion formulas 

(35) 

(36) 

(37) 

and 

= = — MT.0 (38) 
n 

= — — L j — (39) 

f o r / = 2 , — 1. 
Since here £ and each power of £ is not a scalar, 

but a (2/V+ l)-dimensional vector, each product 
C" = fc" - 1) ° C has to be performed according to the 
algorithm of the harmonic vector product formation 
as given in [1], The unavoidable truncation of the 
MacLaurin expansion has to be controlled by the 
wanted accuracy of the overall procedure in a 
suitable way. 

So if 

u = ex p ( a f / ( l + < 0 ) (40) 

as computed by a special subprogram and 

v — \ + rj, w=uOv (41), (42) 

the 2 N + 1 non-linear algebraic equations derived 
from (24) are 

y ? ( l + / z K + y ( l - v v ) = 0 , (43) 
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/ co c,. + ß(\+n)$c-y u'(.. = 0 | ^ (44) 
/ 1 M 

- j co C,, + ß(\+n) c,, - y H = 0 1 (45) 

which are again solved iteratively by the Powell 
method [7]. 

4. Conditions for Oscillations 

Going back to (21) and (22) the steady state is 
characterized by css = rjss = 0 in accordance with the 
definitions of c and r/, (15) and (16), respectively. 
The Jacobian elf/dx is given by 

d x 
(46) 

- £ ( l + / / ) + y e x p ( a c / ( l + c ) ) -
(1 + C)' 

y exp (a c / ( 1 + O ) •- ß - e x p (a c / ( 1 + £)) 
- e x p ( a c / ( l + c ) ) - ^ • (1 + //) 

(1 + 

the Jacobian at the steady state by 

_;-ß(\ + M) + *y 
t/oo (47) 

which yields for the eigenvalues /. at the steady state 
the characteristic polynomial 

or 
(~ß(\ + /t) + a y- k ) i r ß - 1 - k) = 0 (48) 

;.2 + ;.(i + /y + / y ( i + / / ) - a y ) 

+ / i ( l + / ? ) ( l + / / ) - a £ - / = 0 . (49) 

Necessary condition for oscillations is that the 
critical point c s s = ^ s s = 0 is an unstable node or 
unstable focus, which means that simultaneously 

ß(\ + ß)(\+M)-*ßy>0 
and 

(50) 

( 5 1 ) l + ß + ß(\+p) — %y<0 

which can be united to 

\ + ß + ß(\+p)<xy<(\ + ß)(l+H). (52) 

This shows that for the qualitative behaviour of the 
system actually only three parameters exist, namely 
(ay), ß and (1+/ / ) - To have a gap for a y at all, 
means that 

\+ß + ß(\+M)<(\+ß)(\+p) (53) 

equivalent to 

ß<M- (54) 
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Fig. 2a. Plot of C(T) in the interval [ -0 .075 . 0.075] vs. ^( r ) 
in the interval [ - 1 , 1]. 

Since this condition is a prerequis i te for (52), ß and 
// stand highest in the hierarchy of parameters , (ay) 
is lowest. 

5. Result for the Example Treated by Gilles 

In order to test the U H B method , the same model 
system with exactly the same paramete rs as that 
computed by Gilles [6] was treated. Inserting the 
particular values given there the pa ramete r set is 
a = 30.40, ß = 0.1604, 7 = 0.0616 and n = 2.73, the 
criterion (52) for instability is with 1.759 < 1.873 
< 4.328 fulfilled. The f requency of the l inearized 
system with vanishing ampl i tudes would be 0.62497, 
the real part of the pair of conjugated complex 
eigenvalues of (49) 0.0570. Using the method of 
restricted harmonic balance (only first ha rmon ic 
considered) Gilles found a f requency of 0.6672. T h e 
actual frequency af ter the U H B method is however 
0.7339. oscillations are not a round (0,0), but a round 
<f= - 2.785 • 10 - 3 and ^ = 0.16864. The d rop of 
ampli tudes from / ' = 1 to j=N= 12 is f rom 
3.1776 • 10"2 to 7.1895 • 10~5 for c and f rom 0.70968 
to 1.171 • 10~3 for // indicating that the neglect of 
higher harmonics leads to a considerable error. This 
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fact is conspicuously demonstra ted by the plots of c 
vs. // and 10 c and q vs. co t as given in F igure 2. 

6. Conclusions 

In this paper it is demonstra ted that the me thod 
of Unrestricted Harmonic Balance is appl icable in a 
far broader range than was originally expected and 
intended. The extension to transcendental funct ions 
/ ( . Y ) is executed for the part icular case of f ( x ) 
= exp {a x/(\ + A-)!, but there is no doubt that any 
other function could be treated as well. So the range 
of tractable non-linear problems is extended so 
much that hardly any l imitat ion can be seen. The 
truncation of the series expansion of the transcen-
dental functions can be easily controlled by adapt -
ing the convergence to the drop of ampl i tudes of the 
harmonics. In the preceding example the t runcat ion 
occurred typically after .Y8 in the final pass (N = 12). 
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