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CODATA has recently published its readjustment of the fundamental physical constants and
assigns a relative precision of 128 x 107 to G, the Newtonian constant of gravitation. Given that
most of the other constants in physics have relative precisions of ~ 107 or better, we examine
the reasons why the value for G remains so imprecise: The role of G in physics in general is
considered and the most recent experimental determinations are examined. Constraints are given
for perturbing effects in G measurements and a key result is that horizontal ground movements
must be taken more carefully into account in future more precise terrestrial experiments.

The Role of G in Physics

In physical science there are very few subject
areas which demand a precise value for G, the New-
tonian constant of gravitation. In celestial mechanics,
for instance. it is only the products of planetary
masses and G which are of importance in determin-
ing orbital parameters. Another example arises in
geophysics, where the most important “constant” is ¢,
the acceleration of gravity at a point on the earth’s
surface, a quantity which includes, again, G, the
mass of a planet (earth), and the radius of the earth.
Most scientists and engineers simply have no need
of G in their work.

There are, however, some fields of study which
require its use. In general relativity G is a factor in
the constant which relates stress-energy of space
time to its curvature. Then, in astrophysics, the
luminosity of stars depends on the seventh power
of G. Moreover, in cosmology, our present interpre-
tations of Mach’s principle state that the magnitude
of local inertial forces is governed by the product
of G and a factor determined by the large-scale
mass distribution of the universe. A numerical value
for G can, in principle, be derived using Mach’s
principle.

Values of G have also been derived from other
theoretical standpoints. as well. Although there is,
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as yet, no consensus on even the fundamental prin-
ciples used as a starting point for such calculations,
several workers [I. 2, 3] have produced useful theo-
retical models that may lead to G, and some have
actually derived numerical results [4, 5] which are
in agreement with the currently accepted measure-
ments [6]. In much the same way that quantum elec-
trodynamics has driven refinements in the measure-
ments of the fine structure constant, a well-accepted
theoretical prediction of G would provide a stirring
stimulus for higher-precision gravity experiments.
Furthermore, such a prediction would relate G to
the atomic constants, thereby increasing its im-
portance to metrologists as well. An alternative
viewpoint is that G should be given a fixed value:
a combination of G, ¢, and Planck’s constant, /,
could be used to define the unit of mass, the Planck
mass. in a way similar to the 1983 definition of the
metre in terms of a fixed value for the speed of
light [7]. Indeed, it seems likely, according to super-
string theories [§8], that the masses of the elementary
particles can be computed from the Planck mass. It
Is interesting to compare the relative rates of in-
crease in the precision of measurements of G and ¢
as shown in Figure 1. Whilst there was no stimulus
from theoretical physics to increase the precision
of the speed of light, the same is not necessarily
the case for the gravitational constant. The relent-
less increase in the precision of the speed of light
was fuelled by advances in technologies such as
radio-frequency techniques and lasers. In contrast,
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Fig. 1. The increase in fractional precision of the Newtonian constant of gravitation G and the speed of light, ¢ (finally
fixed by definition in 1983 [7]). The log-log plot clearly shows that the rate of reduction of the uncertainties of these
fundamental constants is not linear in time; the ¢ curve can be parametrised as Ac/c %1 %% and 4G/G xt~'3 where ¢
is time in years. To keep pace with the increase in precision predicted by the G curve, we must achieve an improvement
of an order of magnitude within the next six years! (The data used for this plot can be found in [45].)

there have been no such breakthroughs in the mea-
surement of gravitational forces since the time of
Cavendish.

We feel that a strong motivation for continued
development of the techniques of experimental
gravitation comes from the present drive to unify
the four forces of nature [9]. One of the earliest
attempts to incorporate gravity into a unified theory
was made by Fujii [10, 11], who proposed break-
downs in the Newtonian description of gravity and
related them to other couplings via a scale-invariant
theory. This led to a variety of experimental veri-
fications of the inverse square law. On geophysical
scales, however, the work of Holding et al. [12]
would suggest that this question is still open, and
some see their results as possible evidence for an
additional short range force in nature [13]. The
theoretical development continued with contribu-
tions from Feinberg and Sucher [14]. Later, Gib-
bons and Whiting [15] established the presently ac-
cepted parametrization of the non-Newtonian com-
ponent of such a force.

In parallel with the theoretical and experimental
interest in G () there evolved an interest in the pos-
sibility of a time dependence of G. The original sug-
gestion of Dirac [16] was restudied by several
workers during the 1970’s toward the goal of in-
corporating his large-numbers hypothesis as a gauge
condition in a scale-covariant theory of gravity.
Moreover, the possibility of radar ranging to the
inner planets presented the hope of experimental
investigation [17]. Unfortunately, the results of these
experiments are not unambiguous [18], and a defini-
tive laboratory experiment is not yet foreseen, al-
though there exists at least one serious candidate
[19]. A recent study [20] has given the exciting result
that a certain class of superstring theories predict
a value of the fractional rate of change of G as
—1x10~"*! per year. Unambiguous, non-astro-
nomical measurements of this quantity are required
to distinguish between these theories.

Nevertheless, to the present day. it appears that
gravitation stands apart from the quantized field
theories. and in such a decoupled theoretical picture
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there is no doubt that G is, in fact, a true constant of
nature. An incorporation of gravitation into the rest
of physics, with the resultant unification of the
forces, is the ultimate goal of theoretical physics,
and developments such as the superstring theories
and the new inflationary universe scenario give real
hope of reaching this goal.

The Experimental Determination of G

In its recent reassessment of the values of the
fundamental constants [21], CODATA gives a
value for G as

G = (6.67259 £ 0.00085) x 10~ "' m3* kg~ 's 72

The relative uncertainty in this value is 128 x 107,
and this result is based on an analysis of the three
most recent measurements [6], each of which claims
an uncertainty of about 1074 but all of which ex-
clude each other from the limits of error quoted by
each of the authors. All three of these works in-
volved the use of torsion pendulums: Sagitov et al.
[22] and Luther and Towler [23] used the time of
swing method largely developed by Heyl and Chrza-
nowski [24] whereas Pontikis [25] employed a reso-
nance method similar to that first used by Zahrad-
nicek [26].

We have attempted to summarize in Table | the
possible perturbations encountered in an experi-
ment to determine G to a relative precision of 1076,
We have taken the attracting mass to be 10 kg (M),
the test mass (m) to be 10 g and their centre of mass
separation (r) as 10 cm. These parameters are repre-
sentative of the most recent torsion balance mea-
surements.

The first four items in the table are straightfor-
wardly calculated and the constraints listed in the
final column can be satisfied in practice without too
much difficulty. However, the problem of horizon-
tal ground vibrations is of a more subtle nature and
much more difficult to resolve: A horizontal ac-
celeration (¥) will cause a simple pendulum oscil-
lation of the torsion balance. The balance arm will
then try to align itself perpendicularly to the direc-
tion of the ground displacement in order to mini-
mise its moment of inertia (and kinetic energy)
about the rotation axis. We have calculated the
magnitude of this effect by assuming a simplified
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Table 1. The constraints on perturbation effects in a de-
termination of G to a relative precision of 1076 See the
text for details of the experimental arrangement con-

sidered.

Perturbing effect

Comments

Limits for 1076 G

Gravity gradient
due to a person
of mass 100 kg

Electrostatic
forces

Thermomolecular
flow

Magnetostatic
forces

Horizontal
ground
vibrations

torsion balance
armlength 20 cm

grounded con-
ducting vacuum
chamber

vacuum pressure
1075 mm Hg
(1.3x107% Pa)
no magnetic
shielding, pure
materials

critical damped
simple pendulum
mode, white ac-
celeration spec-

closest distance of
approach 4 > 25 m

voltage difference
between test masses
and chamber

AV =5mV

temperature differ-
ence across chamber
AT=0.1K

product of volume
susceptibilities of
masses y; y> = 10~

spectral density of
horizontal accelera-
tion

¥=10""ms %/Hz!"?

trum (see appendix)

time of swing
method with

35 um diameter
tungsten fibre of
thermo-elastic co-
efficient f=7x 1073
(for quartz
f=—1.1x10"%)

variations in ab-
solute temperature
AT =001 K

Thermo-elastic
coefficient
of fibre

model of a torsion balance as described in the ap-
pendix, and we note that a complete treatment of
the dynamics of the torsion balance can be found
elsewhere [27].

Assuming a white horizontal vibration spectrum
(which is realistic for frequencies higher than
~ 1 Hz) of magnitude yj(v) we find the rms value
of the applied noise torque to be

m d3/2

BT e Qsin2y
T >y (v)? 4qg'7

(d*+ R?*sin?y)!2’

ey

where Q is the simple pendulum mode quality fac-
tor, d is the length of the torsion fibre and n/2 — w
is the angle between the balance arm and the direc-
tion of the ground displacement (see Figure Al).
The maximum noise level which can be tolerated
given in Table | has been calculated assuming that
the simple pendulum mode is critically damped as
was approximately the case in Luther and Towler’s
experiment. However, even under these circum-
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stances. the spectral density limit is close to the
minimum that one can expect at a quiet location
on our planet [28]. This result clearly implies that
damping for the simple pendulum mode and vibra-
tion isolation are required in future determinations
of G with otherwise uncompensated torsion bal-
ances. Equally, as typical values of ground vibration
level and the Q of the undamped simple pendulum
mode are 5x 1073 ms~2/Hz'? and 10%, respectively,
it is quite possible that this perturbation has limited
the precision of previous determinations.

The coupling can be reduced by increasing the
symmetry of the suspended system as has been done
on the tests of the weak equivalence principle by
Roll et al. [29] and Braginsky et al. [30]. Unfortu-
nately, increasing the number of balance arms also
reduces the gravity signal in a G measurement as
well as the sensitivity of the balance. Perhaps. even
so. this approach should be investigated in more
detail. Sagitov et al. noted that a fractional change
of period of up to 1.5x 107 could occur between
night and day-time measurements, and this varia-
tion. as they point out, was due to the changing
amplitude of ground vibrations. The fluctuations in
oscillation period gave rise to a fractional uncer-
tainty in Sagitov et al.’s value of G of 1.2x 1074 It
Is interesting to note that in Pontikis" resonance
method the statistical uncertainty associated with
each individual measurement is only of the order of
107°. However his set of G values shows a clear
time dependence of about 1072 per day.

The time of swing method relies on the repro-
ducibility of the torsion constant of the fibre. and it
is this feature of the G determinations which has
proved the most troublesome in the past. Sagitov
et al. observed variations in the period of oscillation
of their tungsten fibre torsion balance due to
changes in shear modulus as a function of tempera-
ture (see Table 1) and, taking their value for the
thermo-elastic coefficient. a 35 um diameter fibre
and our model experimental parameters, it can be
shown that the temperature of the fibre must be
held constant to 0.01 K to achieve a 107° deter-
mination of G. This would not be easy but is pos-
sible in principle.

The natural period of oscillation of the quartz
fibre used by Luther and Towler drifted by a frac-
tional amount of 3x107% per day. and they at-
tempted to eliminate this unexplained effect by
removal of a trend from the data. The statistical
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variations of the residuals gave a relative uncertainty
of 4 x107° to the value of G which was the largest
single contribution to the error budget. These prob-
lems with the stability of the fibre are most likely
due to anelasticity and could be eliminated with
feedback techniques of the type developed by
de Boer et al. [31].

Another difficulty arises in the need for absolute
distance measurements which requires that the
position of the centres of mass of the bodies be well
known: however density inhomogeneities make this
uncertain. According to the error budgets of the
recent experiments such metrological problems
would limit the relative precision to about 4 x 1073

New measurement strategies are being studied
which may obviate some of the problems. For in-
stance. various alternatives to the torsion-fibre sus-
pension have been investigated. These include mag-
netic suspensions [32, 33] and fluid suspensions [31,
34]. Other forms of classical mechanical detector
such as the compound pendulum [35] and the beam
balance [36] are being revived and show promise
of becoming serious alternatives to the torsion bal-
ance [37]. All these detectors aim at increasing the
gravitational torque signal by increasing the mass
of the suspended test bodies over that possible with
torsion balances and use servo systems to improve
the stability of the suspension. Feedback can also be
used to isolate mechanical detectors from micro-
seismic noise, a technique which is also being de-
veloped for interferometric gravity wave detectors
[38]. Another key feature of this class of alternative
detector is that they are less susceptible to pertur-
bations due to ground vibrations.

Advances in the manufacture and measurement
of the homogeneity of amorphous materials of the
sort used in the Relativity Gyro Experiment [39]
will reduce the uncertainties in the metrology of the
attracting masses. Similarly, the use of monocrystal-
line silicon in a Cavendish experiment has already
been proposed [40]. The difficulties associated with
ground vibrations would be greatly reduced if an
appropriate experiment could be performed in
space. On the other hand. new design challenges
would arise and the problems associated with them
have been discussed by various authors [41, 42, 43,
44).

The route toward a more precise value of G lies
in long-term experimental programmes which ad-
dress the problems associated with the terrestrial
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experiments and also investigate the difficulties of
measurements in space. The experience and knowl-
edge gained in searches for forces weaker than
gravity of the type proposed by Fischbach et al. [13]
may also contribute usefully to the techniques re-
quired in experimental gravitation.

We would like to thank W. Towler, T. J. Quinn,
and R. C. Ritter for useful discussions. One of us
(CCS) thanks the Centre for Advanced Studies of
the University of Virginia for financial assistance in
Support of this work.

Appendix

The torque on a torsion balance due to horizontal
ground movements

For this calculation we imagine that the torsion
balance comprises a light, rigid inverted “7” at-
tached to the ground by an ideal universal flexible
joint at 0 (see Fig. Al). The y axis is defined by the
direction of the horizontal ground displacement,
Vo, Which can of course lie at any arbitrary angle
(/2 — w) to the suspended dumb-bell.

First we calculate the coordinates of the dumb-
bell after the arbitrary displacement shown in
Fig. A2, and then go on to calculate the Lagrangian
of the system. The initial positions of the two test
masses are given by the vectors

+Rcosyi*Rsinyj—dk. (A1)

These vectors give the positions of the masses
relative to the point (0, vy, 0) before the rotation in
the y — = plane of the pendulum “fibre”. A rotation
about the x axis can be described mathematically
by the transformation matrix,

1 0 0
M=|0 cost—sin0 (A2)
0 sinf cosd

Thus the coordinates of the masses of the rotated
pendulum relative to (0, vy, 0) become

X’ * R cos v
V| =M|ZxRsiny (A3a)
- —-d

or

(x’.y.z")= (£ Rcos w, = Rsinycos 6§+ dsin 0,
* Rsin ysin 6 — dcos ). (A3b)
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Fig. Al. Schematic of the model dumb-bell torsion bal-
ance and the coordinate axes. The “fibre” has a length ¢
and the total length of the balance arm is 2 R.

Fig. A2. A horizontal ground movement, y,, gives rise to
a simple pendulum oscillation of amplitude ¢ about the
instantaneous axis of rotation.

So the coordinates of the two masses in the origi-
nal coordinate system (relative to 0) are
(x.y,2)= (£ Rcos y, yyx Rsinycos+dsind,
* R sin ysin 6 — d cos 0). (A4)

We can now calculate the potential, V, and ki-
netic, 7. energies of the dumb-bell masses. For
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mass | we have

(AS)

+ 3 0(2d cos @ — 2 R sin ysin 6)

+ Yo W (2R cos wcos 0) + i 0 (2 R d cos y)!

and for mass 2, (A6)
m [ ) ) 2 12 2 2 2D
T, =Wt w* R+ 0% (d* + R*sin’ y)
+ 790 (2d cos § + 2R sin y sin 0) (A7)

— Yo (2R coswcos ) — (2R dcos ),
thus giving a total kinetic energy

T=mid+ w2 R*+ 62 (d*+ R¥sin? y)

+27y00dcos 0. (A8)
The potential energy is simply
V=mg iz, + 2,
=-2mgdcos 0, (A9)
and the Lagrangian of the system is
L=T-V. (A10)

We can now calculate the equations of motion in 6
using Lagrange’s equation

d(eL)_ oL =0 All
dr\do) o0 Al
We find
d[oT (. 3 =
a\2d =2m{0( '+R‘sm~y/) |
+20R?*sin ycos w6
+Yodcos—y6dsinf) (A12)
and that
oV
(60 ) ==2mgdsing. (A13)
The equation of motion in ¢ then becomes
(d*+ R*sin ) 0+ R*sin 2y 62 (A14)

+¥odcost —yOdsin+gdsind=0
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or ignoring third order and higher terms, we obtain

(d*+R*sin*y) I +gdb=-7,d. (A15)
For the y equations of motion we find

418 p R i (A16)

== l—=) =4I /N

di\ oy v
but

OL/dw=2m R?sin ycos y 62 (A17)
and then obtain

y—3sin2y 62=0. (A18)

We notice that the simple pendulum oscillation
can apply torques to the torsion mode of the pen-
dulum. The basic mechanism is that of the reduc-
tion of the kinetic energy by the lining up of the
dumb-bell with the axis of rotation. The simple
pendulum oscillation can apply a fixed torque for
w=n/4 or apply an additional torque per unit de-
flection to the balance for w =0 or n/2. We shall
calculate the effect of horizontal ground vibrations
on both the time of swing method and the static
deflection method.

First we must find an expression for 2 in terms
of the spectral density of horizontal ground vibra-
tions Y (v). Rewriting (A 15) and including a damp-
ing term. b, proportional to ¢, we find

(G = Yo (v d? E do .
(d*>+ R?sin?y)? | (0 — o) +4y0?
(A19)
where 7= b/4m (d*+ R*sin? y).
On evaluation of the (standard) integral,
0% =4 m?d?*y,(v)?- 0 (A20)

b-2mgd’
Finally we make the approximation that

CRETICR

with @i =g d/(d*+ R*sin* y) and obtain from
(A18)

. 5 (A21)
O I
g 92 @2+ RZsinly)"2 Sin =W
where
_ 2m (d? + R?sin? y) o, (A22)

b
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We shall assume that the simple pendulum mode
is critically damped and calculate the maximum
vibration spectral density permissible if we are to
make a measurement of G to a relative precision of
10°°.

Assuming the static deflection method (w = n/4),
the parameters of the model experimental setup,
and that the length of the fibre, 4, is 0.5 m and the
length of the beam, 2 R, is 20 cm, we can write

N . 2GMmR

2m(d*+ R2) j ~ D 51076, (A23)
2

Then using (A21) we find

Vo(v) =3x10""ms~2/Hz'2 (A24)
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