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By computing the probability distributions of the velocity difference between cars a time-delay r 
apart, the scaling properties of traffic flow can be analysed. These data display scaling behaviour thus 
confirming earlier results that have found 1/ /Q-noise in traffic flow. Furthermore, the applicability of 
the scaling analysis for describing the two-point statistics of traffic flow is demonstrated, leading to 
an additional test for the dynamical properties of microscopic and macroscopic traffic flow models. 

1. Background 

There are several references that report the exis-
tence of 1 / / Q - n o i s e in traffic flow, most ly based on 
theoretical work or compute r s imulat ions of various 
microscopic and macroscopic models [1 - 4 ] . There 
exists an addit ional c la im about the intermittent be-
haviour of traffic flow [3], based on a standard model 
in traffic flow theory (the transition f r o m congested 
flow to uncongested flow can be unders tood as a 
queue discharge [5]), where the intermit tence con-
cerns switches be tween a congested flow regime and 
a free flow regime. (The theoretical models are mostly 
for one-lane traffic, however, other results exist also 
[6].) Empir ical evidence for l / / a - n o i s e is reported 
in [7], unfortunately, the results found there are based 
on a somewhat l imited statistics. 

Recently, with the support of local authorities, we 
were able to collect a large amount of high-resolution 
traffic-flow data, where the velocities and arrival t imes 
were recorded of any car that passed an induction loop 
detector. This gives us the opportuni ty to do a reliable 
statistical analysis, which we are going to report in 
the fol lowing. The analysis will be done in the spirit 
of analysing the scaling propert ies of turbulent flow 
[8, 9], which can be shown to yield sensible results 
even in complete ly different fields [10]. The appropri-
ate tool is the computa t ion of the probabil i ty distribu-
tion of the velocity d i f ferences ATv = v(t — r ) — v(t) 
for various values of r . These distributions PT(ATv) 
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Fig. I. Averaged velocity (measured in km/h) and flow 
(measured in cars/min), averaged over twenty cars as func-
tion of time showing the strong non-stationarity of traffic 
flow. 

provide a more comprehens ive account on the statis-
tical features of the t ime-series under considerat ion 
compared with the power spect rum, which is a func-
tion of ( ( A r v ) 2 ) alone. In general , the PT(ATv) give 
a complete characterizat ion of the two-point statistics 
of the t ime-series, and can be used to provide a fur ther 
opportuni ty for the test ing of traffic flow models , as 
it is sensitive to dynamica l aspects of traffic flow and 
not only to statical ones as the fundamen ta l d iagram 
(the measurement of the relation be tween flow and 
average velocity). 

Unfortunately, traffic flow is highly non-stat ionary 
as can be seen in Fig. 1, where the t ime-averaged flow 
is shown for the full data-set of length « 106 sec of 
a two-lane road, so some caut ion is needed about the 
results derived. In order to suppress effects s teming 
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Fig. 2. Fundamental diagram as com-
puted from the data in Fig. 1, with lines 
separating the different regimes used in 
the subsequent analysis. The separation 
lines are drawn at vc = 65 km/h and 
qc = 0.5 cars/sec. 

1 

0.1 

0.01 

~ 0 .001 

£ 
£ 0 . 0 0 0 1 

1e-05 

Fig. 3. Frequency distribution Pr(Av) 
for both lanes. The curves are shifted in 
y-direction with respect to each other for 
clarity. All distributions are normalized 
to a standard deviation of 1. 
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f r o m non-stationarity we compute condit ional prob-
abili ty distributions, based on the fo l lowing (rough) 
classif ication of traffic flow. When plotting the aver-
aged flow q (averaged over 20 cars in the data of Figs. 
1 and 2) versus the corresponding average velocity v 
in this interval, as is shown in Fig. 2, three regimes 
can be identified: (i) a free flow regime, where cars in-
teract only occasionaly, def ined by v > 65 km/h and 
q < 0 .5 cars/sec, (ii) a regime of highly correlated 
flow, where the system is dominated by cars driving 
with the same speed in small queues and with small 
headways (v > 65 km/h and q < 0 .5 cars/sec), and 
(iii) a congested regime with med ium or small flows 

at large densi t ies (v < 65 km/h) . We are aware of fur-
ther investigations m a d e about the congested regime 
[11], however since the data are very sparce there, we 
do not subdivide the fundamenta l d iagram in Fig. 2 
further. 

The data used in the subsequent analysis are the 
velocit ies of single cars crossing an induction loop 
detector, col lected at K ö l n - N o r d over more than one 
week. The measuremen t s are truncated to 8-bit inte-
gers ranging f r o m 0 to 255 km/h, and have an accuracy 
of approximate ly 3 %. Addit ional ly to the velocities, 
the type of a car (truck, passenger car) and the t ime 
when a car crosses the detector is recorded. The d a t a -
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Fig. 4. Scaling of the even moments 
((ATv)n) as function of r for the full 
data-set, showing the scaling bahaviour. 
For larger moments, there is a raising 
noise in the data-points, however a reli-
able fit is still possible. 
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Fig. 5. Comparison between data from 
the free-flow regime compared to the 
full data-sets. As expected, there is no 
scaling at all in the free-flow regime, 
because the velocities of cars at differ-
ent time-lags are independently drawn 
from an underlying distribution, the dis-
tribution of their desired velocities. 

set contains a total of 515,429 da t a -po in t s f r o m two 
lanes, which will be merged in the fo l lowing to avoid 
the overloading of our presentat ion. 

2. Analys is of the Data 

In Fig. 3, we have plotted the probabi l i ty distri-
bution funct ion PT(ATv) for various values of r . 
Note that r refers to a real t ime that is measured 
in sec, and not to the car index. We have es t imated 
the P j(V { - j — v ^ with respect to the car index j and 
found that this hides the scaling behaviour. The Av-
axis is normalized with ((Z\^)2) which facil i tates the 
recognit ion of intermittence. The distr ibution is defi-
nitely non-Gauss i an for small values of r , and there 

were only small d i f ferences between the two lanes. 
Those d i f ferences can be explained by differences in 
the velocity distribution, e. g. the mean velocities on 
the left lane are larger than on the right lane. The 
peak in PT(ATv) at small values of Av and for small 
r can be explained as fol lows. W h e n the flow exceeds 
a certain value, traffic organizes itself by building-
up small queues of cars driving together with small 
headways , but approximately equal velocities, which 
is a p rominent feature of the system in the above 
ment ioned correlated regime. The peak vanishes for 
T = 5 . . . 8, as a fur ther analysis (results not shown) 
suggests . This corresponds to 10 . . . 16 cars at maxi-
m u m flow 2 cars/sec, which can be interpreted as the 
average queue- length. 
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Fig. 6. Plot of C n as function of n, where 
Cn is the exponent of ((Zi rz;)n). There 
are deviations from a straight line, indi-
cating multi-fractal behaviour. 

In Fig. 4 we have plotted the scaling funct ions 
((ATv)n) for the even moments n = 2 , 4 , 6 , 8 , to-
gether with the least mean square fit results for these 
curves. The data for the odd moments are more noisy 
and are not shown here. From the scaling behaviour 
((ATv)n) oc , the resulting exponent for the sec-
ond m o m e n t is £2 = 0 .141 ± 0.001, corresponding to 
a l / / a - n o i s e with a = 1.14. The results shown in 
Fig. 5 demonstrate , that this result is not trivial. Here 
w e have used data f r o m the free-f low regime only and 
compared them to the data f rom the comple te data-set 
showing that the scaling behaviour is not present in 
the f ree-f low regime. That is what one would expect , 
because in the free-f low regime cars are independent 
f r o m each other except at very small values of r , so 
that the momen t s of pT(bTv) are not dependent on r . 

In Fig. 6, finally, the scaling exponents are plot-
ted versus n, showing multifractal behaviour because 
( n oc n is not fulfi l led. 

3. Conclus ion 

We have shown here, that traffic flow shows scaling 
behaviour. Thus we confirm older results [7], which 
have reported 1 j j 0 1 -noise in traffic flow. Note that the 
exponent a = 1.14 we found is quite close to what is 
found in [7], where a = 1 was reported. The results 
obtained with theoretical models we know about are 
more dispersive. The macroscopic model using the 
Burger ' s equation [1] yields a = 1.4. Microscopic 
models display a variety of values, e. g. in [12] a = 1.8 

is reported, whi le the cellular automaton model [3] 
yields a = 1, especial ly when used in a multi- lane 
context [6]. In this article a dependency of the expo-
nent a on the total flow in the system has been re-
ported, however it remains to be proven, whether this 
dependency has the same origin as the dependency 
observed on £2 in our empirical data. 

The small exponent found for (2 makes sense when 
interpreted as a r andom walk with "ant i -pers is tence" . 
In such walks, an increase in the past is countered by a 
tendency to decrease in the future, which makes sense 
for traffic flow data, where one has an l imited range 
of velocities. 

Addit ionaly, it can be seen that the analysis of traf-
fic flow done here will open up the possibili ty of a 
different character izat ion of traffic flow. Finally we 
want to point out that a model for traffic flow should 
be able to reproduce the statistics characterized here 
in order to show its validity. 
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