Scaling Properties of Traffic—flow Data
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By computing the probability distributions of the velocity difference between cars a time-delay 7
apart, the scaling properties of traffic flow can be analysed. These data display scaling behaviour thus
confirming earlier results that have found 1/ f-noise in traffic flow. Furthermore, the applicability of
the scaling analysis for describing the two—point statistics of traffic flow is demonstrated, leading to
an additional test for the dynamical properties of microscopic and macroscopic traffic flow models.

1. Background

There are several references that report the exis-
tence of 1/f*-noise in traffic flow, mostly based on
theoretical work or computer simulations of various
microscopic and macroscopic models [1 - 4]. There
exists an additional claim about the intermittent be-
haviour of traffic flow [3], based on a standard model
in traffic flow theory (the transition from congested
flow to uncongested flow can be understood as a
queue discharge [5]), where the intermittence con-
cerns switches between a congested flow regime and
a free flow regime. (The theoretical models are mostly
for one-lane traffic, however, other results exist also
[6].) Empirical evidence for 1/ f“-noise is reported
in [7], unfortunately, the results found there are based
on a somewhat limited statistics.

Recently, with the support of local authorities, we
were able to collect a large amount of high-resolution
traffic-flow data, where the velocities and arrival times
were recorded of any car that passed an induction loop
detector. This gives us the opportunity to do a reliable
statistical analysis, which we are going to report in
the following. The analysis will be done in the spirit
of analysing the scaling properties of turbulent flow
[8, 9], which can be shown to yield sensible results
even in completely different fields [10]. The appropri-
ate tool is the computation of the probability distribu-
tion of the velocity differences A, v = v(t — 1) — v(t)
for various values of 7. These distributions P, (A, v)
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Fig. 1. Averaged velocity (measured in km/h) and flow
(measured in cars/min), averaged over twenty cars as func-
tion of time showing the strong non-stationarity of traffic
flow.

provide a more comprehensive account on the statis-
tical features of the time-series under consideration
compared with the power spectrum, which is a func-
tion of ((A,v)?) alone. In general, the P, (A, v) give
a complete characterization of the two-point statistics
of the time-series, and can be used to provide a further
opportunity for the testing of traffic flow models, as
it is sensitive to dynamical aspects of traffic flow and
not only to statical ones as the fundamental diagram
(the measurement of the relation between flow and
average velocity).

Unfortunately, traffic flow is highly non-stationary
as can be seen in Fig. 1, where the time-averaged flow
is shown for the full data-set of length ~ 10° sec of
a two-lane road, so some caution is needed about the
results derived. In order to suppress effects steming
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from non-stationarity we compute conditional prob-
ability distributions, based on the following (rough)
classification of traffic flow. When plotting the aver-
aged flow ¢ (averaged over 20 cars in the data of Figs.
1 and 2) versus the corresponding average velocity v
in this interval, as is shown in Fig. 2, three regimes
can be identified: (i) a free flow regime, where cars in-
teract only occasionaly, defined by v > 65 km/h and
g < 0.5 cars/sec, (ii) a regime of highly correlated
flow, where the system is dominated by cars driving
with the same speed in small queues and with small
headways (v > 65 km/h and ¢ < 0.5 cars/sec), and
(iii) a congested regime with medium or small flows

at large densities (v < 65 km/h). We are aware of fur-
ther investigations made about the congested regime
[11], however since the data are very sparce there, we
do not subdivide the fundamental diagram in Fig. 2
further.

The data used in the subsequent analysis are the
velocities of single cars crossing an induction loop
detector, collected at Koln—Nord over more than one
week. The measurements are truncated to 8-bit inte-
gers ranging from O to 255 km/h, and have an accuracy
of approximately 3 %. Additionally to the velocities,
the type of a car (truck, passenger car) and the time
when a car crosses the detector is recorded. The data—
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set contains a total of 515,429 data—points from two
lanes, which will be merged in the following to avoid
the overloading of our presentation.

2. Analysis of the Data

In Fig. 3, we have plotted the probability distri-
bution function P,(A,v) for various values of 7.
Note that 7 refers to a real time that is measured
in sec, and not to the car index. We have estimated
the P;(v;—; — v;) with respect to the car index j and
found that this hides the scaling behaviour. The Av-
axis is normalized with ((Av)?) which facilitates the
recognition of intermittence. The distribution is defi-
nitely non—Gaussian for small values of 7, and there

were only small differences between the two lanes.
Those differences can be explained by differences in
the velocity distribution, e. g. the mean velocities on
the left lane are larger than on the right lane. The
peak in P.(A,v) at small values of Av and for small
7 can be explained as follows. When the flow exceeds
a certain value, traffic organizes itself by building-
up small queues of cars driving together with small
headways, but approximately equal velocities, which
is a prominent feature of the system in the above
mentioned correlated regime. The peak vanishes for
T =5...8, as a further analysis (results not shown)
suggests. This corresponds to 10 ... 16 cars at maxi-
mum flow 2 cars/sec, which can be interpreted as the
average queue-length.
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Fig. 6. Plot of ¢™ as function of n, where
Cn is the exponent of ((A,v)"). There
are deviations from a straight line, indi-

In Fig.4 we have plotted the scaling functions
((A,v)*) for the even moments n = 2,4,6,8, to-
gether with the least mean square fit results for these
curves. The data for the odd moments are more noisy
and are not shown here. From the scaling behaviour
((A;v)") o 7=, the resulting exponent for the sec-
ond moment is {; = 0.141 £ 0.001, corresponding to
a 1/f*-noise with o = 1.14. The results shown in
Fig. 5 demonstrate, that this result is not trivial. Here
we have used data from the free-flow regime only and
compared them to the data from the complete data-set
showing that the scaling behaviour is not present in
the free-flow regime. That is what one would expect,
because in the free-flow regime cars are independent
from each other except at very small values of 7, so
that the moments of p.(6,v) are not dependent on 7.

In Fig. 6, finally, the scaling exponents (,, are plot-
ted versus n, showing multifractal behaviour because
Cn o m is not fulfilled.

3. Conclusion

We have shown here, that traffic flow shows scaling
behaviour. Thus we confirm older results [7], which
have reported 1/ f*-noise in traffic flow. Note that the
exponent o = 1.14 we found is quite close to what is
found in [7], where a = 1 was reported. The results
obtained with theoretical models we know about are
more dispersive. The macroscopic model using the
Burger’s equation [1] yields o = 1.4. Microscopic
models display a variety of values,e.g.in[12]a = 1.8

cating multi-fractal behaviour.

is reported, while the cellular automaton model [3]
yields a = 1, especially when used in a multi-lane
context [6]. In this article a dependency of the expo-
nent o on the total flow in the system has been re-
ported, however it remains to be proven, whether this
dependency has the same origin as the dependency
observed on (; in our empirical data.

The small exponent found for {; makes sense when
interpreted as a random walk with “anti—persistence”.
In such walks, an increase in the past is countered by a
tendency to decrease in the future, which makes sense
for traffic flow data, where one has an limited range
of velocities.

Additionaly, it can be seen that the analysis of traf-
fic flow done here will open up the possibility of a
different characterization of traffic flow. Finally we
want to point out that a model for traffic flow should
be able to reproduce the statistics characterized here
in order to show its validity.
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