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We provide evidence of the nonintegrability of a recently proposed model for water waves in 2+1
dimensions: we show that under a nonlinear time transformation, a certain reduction of this partial
differential equation is mapped to an ordinary differential equation which does not have the Painlevé
property. This is in contrast to what happens in the case of the Camassa-Holm equation. Also, and
again in contrast to the case of the Camassa-Holm equation, the equation under study fails to admit
Dirichlet series solutions. – MSC2000 classification scheme numbers: 35Q51, 35Q58, 37K10.
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1. Introduction

Completely integrable non-semilinear differential
equations, for example as discussed in [1 – 4], have
long been of interest, as have their integrable exten-
sions in higher dimensions [5]. For a discussion of in-
tegrability in multidimensions, we refer to [6, 7]. Thus,
since the derivation of the Camassa-Holm (CH) equa-
tion,

ut + κux−uxxt + 3uux−2uxuxx −uuxxx = 0, (1)

both from a mathematical point of view [8] and also in
the context of water waves [9], there has been a great
deal of interest in the question of its possible general-
ization to higher dimensions. One such generalization,
to 2+ 1 dimensions, was obtained in [10], this system
being the subject of further analysis in [11 – 13].

Another generalization of the CH equation to 2 + 1
dimensions has recently been derived in [14], from
physical considerations, “as an example of what is
possible”. This equation is therein referred to as the
CH counterpart of the two-dimensional Korteweg-de
Vries, or Kadomtsev-Petviashvili, equation, and can be
written as

uyy +(ut + κux−uxxt + 3uux

−2uxuxx −uuxxx)x = 0.
(2)
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In [14] it is noted that the possibility of this equation
being completely integrable is worth investigating; it
is this equation that we will study in the present paper.
We provide evidence, amongst other results, that it is
in fact nonintegrable.

The layout of the paper is as follows. In Sect. 2 we
consider the application of the Weiss-Tabor-Carnevale
Painlevé test [15]; we obtain that (2) admits only
weak Painlevé expansions. In Sect. 3 we derive sev-
eral (1 + 1)-dimensional partial differential equations
(PDEs) as reductions of (2), using the Lie symmetry
approach. In Sect. 4 we analyse a further reduction of
one of these PDEs to an ordinary differential equation
(ODE), comparing our results to those obtained by the
same process for the CH equation itself. In Sect. 5 we
consider the construction of formal Dirichlet series so-
lutions of (2), again comparing to the results obtained
for the CH equation. Section 6 is devoted to conclu-
sions.

2. The Painlevé PDE Test

In this section we consider the singularity analy-
sis of (2). The application of the Painlevé PDE test
presents the same difficulties that arise when dealing
with the CH equation and also with the alternative
(2+1)-dimensional generalization of the CH equation
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introduced in [10]; for the application of the Painlevé
PDE test to this latter see [13]. These difficulties can
be overcome by including an extra lower order term in
the expansion [16]; see (3) and (4) below.

We consider seeking a local Laurent expansion
about a noncharacteristic movable singular manifold
φ = 0 [15]. We find the leading order behaviour

u ∼−ψt + u0φ (2/3), (3)

where here we are using Kruskal’s ansatz [17], that is,
we are taking u0 to be a function of (y,t) only and
φ(x,y, t) = x + ψ(y,t). Here the term −ψt is an ad-
ditional lower order term that corrects the balancing
of terms in the leading order analysis. We obtain as
resonances r = −1,0, 2

3 , 5
3 . The resonance at r = −1

is associated with the arbitrariness of the function ψ ,
and that at r = 0 to the arbitrariness of the coefficient
u0. The remaining resonances indicate that we have to
modify the standard Laurent series expansion and con-
sider instead a “weak Painlevé” expansion, or Puiseux
series. We therefore seek an expansion of the form

u = −ψt + φ
2
3

∞

∑
j=0

u j
3
φ

j
3 (4)

with the coefficients functions of (y,t) and u0 arbitrary.
We find that the compatibility conditions at r = 2

3 and
r = 5

3 are satisfied, and so the expansion (4) contains
four arbitrary functions (ψ ,u0,u 2

3
,u 5

3
) of (y,t), with

all other coefficients in the series being determined
in terms of these. Thus we conclude that (2) fails the
Painlevé PDE test, admitting only a weak Painlevé ex-
pansion.

This result, interesting though it may be, does not
however allow us to conclude that the non-semilinear
PDE (2) is not integrable; the completely integrable
Dym equation, for example, exhibits similar behaviour
[18]. A further analysis of (2) is therefore needed; this
we carry out in Section 4. First we consider the simi-
larity reductions of (2).

3. Similarity Reductions

The application of the classical Lie group method
[19 – 21] requires considering a one-parameter Lie
group of infinitesimal transformations in the variables
(x,y, t,u) given by

x → x+ ε ξ1(x,y,t,u)+ O(ε2),

y → y+ ε ξ2(x,y, t,u)+ O(ε2),

t → t + ε τ(x,y, t,u)+ O(ε2),

u → u+ ε η(x,y, t,u)+ O(ε2), (5)

where ε is the group parameter. The condition that
the above transformation leaves invariant the PDE
under consideration yields an overdetermined system
of linear equations for the infinitesimals ξ1(x,y, t,u),
ξ2(x,y, t,u), τ(x,y, t,u) and η(x,y, t,u). The associated
Lie algebra consists of vector fields of the form

v = ξ1(x,y, t,u)
∂
∂x

+ ξ2(x,y, t,u)
∂
∂y

+ τ(x,y, t,u)
∂
∂t

+ η(x,y, t,u)
∂
∂u

.

(6)

Once the infinitesimal generators have been deter-
mined, the symmetry variables for the associated re-
duction can be found by solving the characteristic
equations

dx
ξ1(x,y, t,u)

=
dy

ξ2(x,y, t,u)
=

dt
τ(x,y, t,u)

=
du

η(x,y, t,u)
.

(7)

For (2) the infinitesimals are

ξ1 = −c1κt + c2, (8)

ξ2 = c1y+ c3, (9)

τ = 2c1t + c4, (10)

η = −c1(2u+ κ), (11)

where c1,c2,c3 and c4 are arbitrary constants. The
above infinitesimal generators provide for (2) different
nontrivial symmetry reductions, depending on whether
c1 is zero or different from zero. These we now con-
sider in detail.

Case 1: c1 �= 0. In this case we can set c1 = 1 and
c2 = c3 = c4 = 0 without loss of generality. Solving
the characteristic equations (7), we find the similarity
reduction

u(x,y, t) =
ω(z,τ)

t
− κ

2
, z = x+

κ
2

t, τ =
y2

t
, (12)

under which (2) reduces to

(4τωτ −2ω − τωz + τωzzz)τ

+
(3

2
ω2 −ωωzz− 1

2
ω2

z

)
zz

= 0.
(13)
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Case 2: c1 = 0. In this case we have different pos-
sibilities according to the values of the constants c2,c3
and c4.

Subcase 2a): c4 �= 0. We can without loss of general-
ity take c4 = 1; the corresponding similarity reduction
is

u(x,y, t) = ω(z,τ), z = x−c2t, τ = y−c3t, (14)

which yields the PDE

ωττ − c3ωzτ +(c2ωzz + c3ωzτ −ωωzz

− 1
2

ω2
z +

3
2

ω2 +(κ − c2)ω)zz = 0.
(15)

Subcase 2b): c4 = 0. In this case we can set c3 = 1
without loss of generality, and we obtain the similarity
reduction

u(x,y, t) = ω(z,τ), z = x− c2y, τ = t, (16)

which gives the equation
(
(c2

2 + κ)ωz + ωτ + 3ωωz−ωzzτ

−ωωzzz −2ωzωzz)z = 0.
(17)

We note that this last is equivalent to the x-derivative
of the CH equation (1).

4. A Nonlinear Time Transformation

It is here that we provide evidence of the nonintegra-
bility of (2). We consider the travelling-wave reduction

ω(z,τ) = P(X)−m, X = z+ mτ (18)

of (17). The resulting ODE in P(X) can be integrated
once to give

PPXXX + 2PXPXX −3PPX −αPX + β = 0, (19)

where α = κ + c2
2 − 2m and β is an arbitrary constant

of integration. (In fact, (19) can be integrated further,
but we choose not to do so here.) We now follow [22]
and make in (19) the transformation

P(X) = v(ζ ),
dX
dζ

= v(ζ ), (20)

which yields

v2vζζζ −2vvζ vζζ + v3
ζ −3v4vζ

−αv3vζ + β v4 = 0.
(21)

It is straightforward to show that this ODE has the
Painlevé property if and only if β = 0. First, applying
the Ablowitz-Ramani-Segur algorithm [23] using the
leading order v ∼ 1/(ζ − ζ0), we find as resonances
r = −1,2,3; the compatibility conditions at r = 2 and
r = 3 are satisfied if and only if β = 0. Thus if β �= 0,
the general solution of the ODE (21) exhibits logarith-
mic branching. Second, if β = 0, the ODE (21) can be
integrated to obtain

vζζ =
1
2

v2
ζ

v
+

3
2

v3 + αv2 +Cv, (22)

or alternatively

vζζ =
v2

ζ

v
+ v3 +

1
2

αv2 + D, (23)

where C and D are constants of integration. These last
two ODEs, being special cases of PXXX and PXII re-
spectively [24], have the Painlevé property.

Thus we see that the transformation (20) yields an
ODE which does not have the Painlevé property. This
is in contrast to the case of the CH equation discussed
in [22], where the same transformation was used to
map a reduction of this last to PXXX . That here we
use the same transformation as in [22] is due to the
close relationship between the CH equation and the
PDE (17) derived from (2); in [22] it is the ODE (19)
with β = 0 that is derived from the CH equation.

Of course, the nonlinear time transformation is
closely related (but at the ODE level) to a hodograph
transformation. We remark that hodograph transforma-
tions are well-established as a tool for mapping com-
pletely integrable but non-semilinear PDEs, which do
not pass the Painlevé PDE test, onto corresponding
completely integrable PDEs which do pass this test.
For the case of the CH equation itself, for example,
see [25]. Indeed, the use of such nonlinear time / hodo-
graph transformations has been proposed in the classi-
fication of ODEs and PDEs [26, 27]. Thus for example
in [27], where a hodograph transformation can be ap-
plied, it is proposed that a Painlevé analysis be under-
taken after making such a transformation. In our ODE
case, this corresponds to testing (21) for the Painlevé
property.

We believe that our results are strongly suggestive
of the nonintegrability of the PDE (2). We remark that,
since we are interested in obtaining an ODE not hav-
ing the Painlevé property, indicative of nonintegrabil-
ity, we do not need to consider further reductions. We
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now turn to a further difference between (2) and the
CH equation.

5. Dirichlet Series

In two recent papers [28, 29] we have seen that cer-
tain examples of non-semilinear integrable PDEs ad-
mit Dirichlet series solutions. In particular, the CH
equation admits such a solution of the form

u = e−x
∞

∑
j=0

u j(t)e jx, (24)

where u0, u2 and u3 are arbitrary, as well of course
as the series obtained from this last under the discrete
symmetry (x, t)→ (−x,−t) of the CH equation. More-
over, it was shown in [28, 29] that for certain classes of
equations, the only PDEs admitting Dirichlet series so-
lutions are transformable back onto the only known in-
tegrable equations within those classes. Thus it would
seem that, for certain classes of equations, there is
some kind of relationship between integrability and the
admission of Dirichlet series solutions; the nature of
this connection is explored in [30].

Here we consider the construction of Dirichlet se-
ries solutions for (2). We obtain the possible leading
order (or dominant) behaviours u ∼ u 0(y,t)e±x, corre-
sponding to which we find recursion relations of the
form

j( j±2)2( j±3)u j = R j, (25)

where R j is a function of previous coefficients (these
being functions of (y,t)), and derivatives thereof.
Here we consider the leading order behaviour u ∼
u0(y, t)e−x. In order that we have a solution containing
four arbitrary functions of (y,t), we need to consider,
instead of a series of the form (24), one of the form

u = e−x
[
u0 + u1ex +(u2,0 + u2,1x+ u2,2x2)e2x

+(u3,0 + u3,1x+ u3,2x2 + u3,3x3)e3x

+(u4,0 + u4,1x+ u4,2x2 + u4,3x3)e4x + · · ·],
(26)

where all coefficients are functions of (y,t). Substi-
tuting this series into (2), we find that u0, u2,0, u2,1
and u3,0 are left arbitrary (we can also obtain a second
series, corresponding to the leading order behaviour

u ∼ u0(y, t)ex, using the discrete symmetry (x, t) →
(−x,−t) of (2)). The modification with powers of x
of our Dirichlet series solution of (2) is in contrast to
the case of the integrable CH equation, where no such
modification is needed.

The reason for this modification is not due solely to
the need to include four arbitrary coefficients (with two
arbitrary coefficients corresponding to j = 2), but also
to the fact that, even in seeking a solution of the form
(24) with u j(y, t), we encounter failed “compatibility
conditions” at j = 2 and j = 3 due to the uyy term in (2).

Thus we see that, with respect to the question of
Dirichlet series solutions, (2) differs in its behaviour
from the integrable CH equation. In [30] we present
a variety of non-integrable PDEs which do not admit
Dirichlet series solutions, in contrast to further exam-
ples of integrable PDEs, which do admit such solu-
tions.

6. Conclusions

We have seen that Johnson’s (2 + 1)-dimensional
generalization of the CH equation, whilst behaving
similarly to the CH equation with respect to the
Painlevé PDE test, differs markedly from the CH equa-
tion in other respects. In particular we have seen that,
if we apply the same nonlinear time transformation as
was considered in [22] for the CH equation, we obtain
an ODE which does not have the Painlevé property.
We believe that this constitutes an indication of non-
integrability. Also, (2) fails to admit Dirichlet series
solutions, whereas the CH equation does admit such
solutions [28, 29].

Acknowledgements

The work of MS forms part of a Department of
Science and Technology, Government of India spon-
sored research project. The work of PRG and AP
is supported in part by the DGESYC under contract
BFM2002-02609, and that of AP by the Junta de
Castilla y León under contract SA011/04. PRG cur-
rently holds a Ramón y Cajal research fellowship
awarded by the Ministry of Science and Technology
of Spain, which support is gratefully acknowledged.
This work was carried out during the visit of MS to
the University of Salamanca, funded under contract
BFM2002-02609, in June 2003.



644 P. R. Gordoa et al. · Nonintegrability of a Water Wave Equation

[1] M. Wadati, H. Konno, and Y. H. Ichikawa, J. Phys. Soc.
Japan 47, 1698 (1979).

[2] M. Wadati, Y. H. Ichikawa, and T. Shimizu, Prog.
Theor. Phys. 64, 1959 (1980).

[3] B. G. Konopelchenko and J.-H. Lee, Theoret. Mat. Fiz.
99, 337 (1994); Theoret. Math. Phys. 99, 629 (1994).

[4] B. G. Konopelchenko and J.-H. Lee, Phys. D 81, 32
(1995).

[5] B. G. Konopelchenko and V. G. Dubrovsky, Phys. Lett.
A 102, 15 (1984).

[6] B. G. Konopelchenko, Introduction to Multidimen-
sional Integrable Equations, Plenum, New York 1992.

[7] B. G. Konopelchenko, Solitons in Multidimensions,
World Scientific, Singapore 1993.

[8] B. Fuchssteiner and A. S. Fokas, Physica D 4, 47
(1981).

[9] R. Camassa and D. D. Holm, Phys. Rev. Letts 71, 1661
(1993); R. Camassa, D. D. Holm, and J. M. Hyman,
Adv. Appl. Mech 31, 1 (1994).

[10] R. A. Kraenkel and A. I. Zenchuk, Phys. Lett. A 260,
218 (1999).

[11] R. A. Kraenkel, M. Senthilvelan, and A. I. Zenchuk,
Phys. Lett. A 273, 183 (2000).

[12] A. I. Zenchuk, Physica D 152 – 153, 178 (2001).
[13] P. R. Gordoa, A. Pickering, and M. Senthilvelan,
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