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New analytic sech2-type traveling solitary-wave solutions, satisfying zero background at infinity,
of a general fifth-order shallow water-wave model are found and compared with previously obtained
non-zero background solutions. The allowed coefficient regions for the solitary-wave solutions are
classified by requiring the wave number and angular frequency to be real. Detailed numerical simu-
lations are performed to demonstrate the stability of the solitary-waves and to show the soliton-like
behavior of two interacting solitary-waves. For a large nonlinear term we show the formation of
a bounded state of two solitary-waves, called bion, which travels as a single coherent structure. –
PACS numbers: 03.40.Kf, 02.30.Jr, 47.20.Ky, 52.35.Mw
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1. Introduction

While it is easy to write down in closed from
a solitary wave solution for the simplest standard
model, namely the Korteweg-de Vries (KdV) equa-
tion, it has proved quite difficult to obtain such solu-
tions for problems from which the KdV equation was
derived as a first approximation [1]. As such KdV hi-
erarchy models, we investigate generalized fifth-order
shallow water-wave equations, which describe certain
physically-interesting (1+1)-dimensional waves [1]
(see Kichenassamy and Olver [2] regarding physics
motivations for this type of models):

vt + αvxxxxx + µvxxx + γ∂x[2vvxx + v2
x]

+ 2qvvx + 3rv2vx = 0,
(1)

where α,µ ,γ,q,r are model parameters, v(x,t) is a
real scalar function, and the subscripts denote partial
derivatives. The equation reduces to the KdV equation
for µ = 1,q = 3, and α = γ = r = 0. Equation (1) in-
cludes some higher-order approximations to the (third-
order) KdV equation, and in fact it reduces to the fifth-
order KdV equation only for qγ = 3rµ and 3γµ = 5qα ,
in which case there is a family of exact sech2-type so-
lutions [2]. It has been shown by Benjamin et al. [3]
and Weinstein [4] that solitary-wave solutions exist in
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the case of γ = 0 and µ < 0. Meanwhile, Amick and
Toland [5] have proved the existence of solitary-waves
of speed equal to −1, if α = 1,r = γ = 0,q = 1, and
µ is smaller than some positive numbers. Kichenas-
samy [1] also has shown that there exist non-trivial
solitary-waves if α > 0, r ≤ 0, q �= 0, and µ > 0, with-
out presenting explicit analytic solitary wave solutions.
More recently, some new analytic solitary-wave solu-
tions have been found in [10, 11] by using the tanh-
method [6] or applying a truncated Painlevé expan-
sion [7 – 9]. More recently, Coffey [12] has found two
new rational solutions in the long-wave limit using the
Painlevé expansion, and also pointed out the errors in
the kink-type solitary-wave solutions obtained in [10].

In this paper we present new analytic sech2-
type traveling solitary-wave solutions with zero back-
ground, i.e., the wave amplitude vanishing at infin-
ity, under some constraints among the coefficients,
and study their dynamics by numerical simulations.
In Sect. 2, we summarize the previously obtained an-
alytic solitary-wave solutions [10 – 12]. We then find
new sech2-type solitary-wave solutions with zero back-
ground and their allowed coefficient regions by requir-
ing the wave number and angular frequency to be real.
In Sect. 3, we study the dynamics of the solitary-waves
with numerical simulations. In particular, we discuss
the stability of the solitary-wave solution and the inter-
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action between the two solitary-waves in the presence
of a strong nonlinear terms. Our conclusions follow in
Section 4.

2. Analytic Methods for Solitary-wave Solutions

It has been shown in [10] that there exists a kink-
type analytic solitary-wave solution of (1). More re-
cently, Coffey [12] has found that an additional con-
straint is required for the solution and corrected a ty-
pographical error in [10]. In the following, however,
we will show that another constraint is necessary for
the kink-type solution to be physically meaningful.
The usual ansatz for kink-type solutions with nonzero
background [6, 10] can be set as

v(x, t) =
N

∑
j=0

A j(t) · tanh j [kx+ ωt] , (2)

where N is the integer determined via the balance be-
tween the highest linear and nonlinear terms in (1),
i.e., N = 2. After some algebraic steps, the kink-type
solitary-wave solution can be given as

v(x, t) =
6γk2

r
[2tanh[kx+ ω(k)t]

−cgsn(k) tanh2[kx+ ω(k)t]
]

− 38γ2k2 + rµ
2rγ

,

(3)

where csgn = 1 for Re(x) > 0 and cgsn = −1 for
Re(x) < 0, and the angular frequency is

ω(k) =
3k

4γ2r
(µ2r2 +100µγ2k2 +2308γ4k4) (4)

under the following two constraints [10, 12]

α =
γ2

2r
(5)

and

q =
2(rµ + 50γ2k2)

2γ
, (6)

from which we find the wave number as

k =

√
2(γq− rµ)

10|γ| . (7)

In order to have a physically meaningful solitary-wave
solution, k is required to be real, resulting in an addi-
tional constraint as

|γq− rµ |> 0, (8)

which has not been pointed out in the previous
works [10, 12]. This is an example of a traveling
solitary-wave solution which does not vanish at infin-
ity. However, this is unphysical because infinite en-
ergy can occur when integrated over x. A simple way
to remedy this is to impose an additional constraint,
i. e., 38γ2k2 +rµ = 0, which also brings out more con-
straint.

We now turn to sech2-type traveling solitary-wave
solutions of (1). Analytic solitary-wave solutions of
sech2-type have been obtained in [11] by the truncated
Painlevé expansion in the form

v(x, t) = φ−2(x, t)
N=2
∑

l=0
vl(x, t)φ l(x, t)

=
v0(x, t)
φ2(x, t)

+
v1(x, t)
φ(x, t)

+ v2(x, t),
(9)

where φ(x, t) is a non-singular ansatz function. The
lengthy expressions for the bright and dark solitary-
wave solutions under some constraints can be found
in [11]. Using a similar procedure as in [11], Cof-
fey has obtained sech2-type analytic bright and dark
solitary-wave solutions with nonzero background,
which differ from those in [11], and has shown that
in the long-wavelength limit they reduce to a rational
solutions [12].

The main purpose of this section is to show that an-
alytic solitary-wave solution of order N = 2 with zero
background can be found using a direct ansatz method
in the form

v(x, t) = Asech2[kx+ ω(k)t]. (10)

Substituting (10) in (1), expanding it to powers of tanh,
and equating the coefficient of each tanh-term to zero,
we get the amplitude

A =
(8γ ±2

√
16γ2 −30rα)k2

r
, (11)

and the wave number

k = 2
[
15α (2γ2 −5rα)(3 µ γ

√
R+ 15 µ rα

− 12 µ γ2 + 10qγ α −5q
√

Rα)
]1/2

(12)

· (300α2r−120γ2α
)−1

,

where

R = 16γ2 −30rα, (13)
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Fig. 1. (a) Bright solitary-wave solution for α > 0 and γ > 15α/2 with r = 8γ2/15α . (b) Dark solitary-wave for α > 0 and
γ < 0 with r = 8γ2/15α . (c) Bright solitary-wave for α < 0 and 15α/2 < γ < 0 with r = 8γ2/15α . (d) The allowed three
coefficient regions for the solitary-waves in (16).

and the angular frequency

ω(k) = (24k2Aγ −136k4α −3A2r−2Aq+8k2µ)k.
(14)

We note that, although the solution is obtained without
any constraint between the coefficients, in order to get
a real wave number in (12), it is required to R ≥ 0.
In the following analysis, as an example, we assume
R = 0 to find a constraint

r =
8

15
γ2

α
, (15)

which in fact indicates a balance between the highest
nonlinear term with the first and second highest dis-
persion terms. By substituting this constraint to (11) –
(14), we find a new solitary-wave solution in the form

v(x, t) =
3(2µγ −5qα)

4γ2 sech2[k′x+ ω ′(k)t],

k′ =
√

5αγ(2µγ −5qα)
10γα

,

ω ′(k) =
√

5αγ(2µγ −5qα)

· (−14 µ2γ2 + 45 µ γ qα −25q2)
/

250γ3α2

=
k′

25γ2α
(−14 µ2γ2 + 45 µ γ qα −25q2). (16)

By further requiring k ′ and ω ′(k) to be real, we find
two constraints:

αγ > 0 and (2µγ −5qα) > 0, (17)

for a bright solitary-wave solution, and

αγ < 0 and (2µγ −5qα) < 0, (18)

for a dark solitary-wave solution. As usual, the group
speed vg = ∂ω ′/∂k′ is given as

vg =
(2 µ γ −5qα)(5qα −7 µ γ)

25γ2α
. (19)
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Fig. 2. (a) Evolution of the numerically simulated v(x,t). (b) The less than 0.5% deviation of the normalized mass M(t) and
energy E(t) from the initial values indicates the stability of the solitary-wave. (c) Comparison of the exact (dotted curve) with
the simulated (dash-dotted curve) wave at t = 40, using the analytic solitary-wave solution (solid curve) as the initial profile,
confirms the accuracy of numerical simulation.

There are two fixed coefficients, i.e., µ = 1 and q = 3,
since at the α = γ = r = 0 limit (1) should restore to
the KdV equation. It is note worthy that in a different
normalization scheme one may set µ = 1 and q = 1 as
for the KdV equation. In the rest of the paper, however,
we adopt µ = 1 and γ = 3. The meaning of (15) is that
r is to be fixed, by fixing α and γ , and the solitary-
wave solution is given in terms of only two free coeffi-
cients: α and γ . From (17) – (18), we find the following
four possible cases: (i) α > 0,γ > 0, and γ > 15α/2;
(ii) α < 0,γ < 0, and γ > 15α/2; (iii) α < 0,γ > 0, and
γ < 15α/2; (iv) α > 0,γ < 0, and γ < 15α/2. Note that
for case of (iii), while α < 0, both γ > 0 and γ < 15α/2
are to be satisfied, which indicates that we can not
obtain both real values of k ′ and ω ′. For a classifica-
tion purpose, we plot bright and dark solitary-waves
in Figs. 1a and b, respectively, for the coefficients be-
longing to the cases of (i) and (iv). It is interesting to
note that the bright solitary-wave solution also exists
for case (ii), as shown in Fig. 1c, for a negative non-
linear term, i.e., r < 0. The allowed coefficient regions

for both bright and dark solitary-waves are presented
in Fig. 1d. They differ from the previously obtained
qγ = 3rµ and 3γµ = 5qα [2] constraints, for which (1)
reduces to the KdV equation. Finally we emphasize
that for R > 0 there exist other families of sech2-type
solutions under more complicated constraints between
the coefficients.

3. Numerical Study of Solitary-waves

In this section we numerically integrate (1) to un-
derstand the stability and dynamics of the sech2-type
solitary-wave solutions discussed in Section 2. Here
the definition of “stability” means that the analytic
solitary-wave preserves, when it is substituted in (1)
and numerically integrated, its initial profile for a long
propagation time without losing the total energy by
radiation. The numerical scheme used in the work
is based on the time advance using the Runge-Kutta
fourth order scheme and a pseudospectral method us-
ing the discrete fast Fourier transformation in the spa-
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Fig. 3. Comparisons of the exact (dotted curve) vs. with the simulated (dash-dotted curve) solitary-wave at t = 100 for three
different input profiles (solid curves), which belong to the coefficient region (I) in Figure 1d. Remarkable agreements confirm
the stability of the solitary-waves.

tial discretization [13], applying the periodic boundary
conditions. The numerical errors in the spatial dis-
cretization were controlled by varying the number of
discrete Fourier modes between 128 and 1024, and
time steps between 10−4 and 10−2 are chosen for a sta-
ble wave propagation.

For the following analysis, we take the analytic
bright solitary-wave from (16) as an initial profile

vinit(x,0) =
3(2µγ −5qα)

4γ2

· sech2
[√

5αγ(2µγ −5qα)
10γα

x

]
.

(20)

Using the same set of coefficients as in Fig. 1a, we
show the evolution of the bright solitary-wave which
preserves its initial shape and stability in Figure 2a.
We note that (1) is not integrable, even though ex-
act solitary-wave solutions exist under the constraints
in (15) and (17) – (18). Therefore (1) does not possess

an infinite number of time-independent integrals. How-
ever, as at least the solitary-wave solutions do exist, we
want to define the simplest two such integrals, namely,
the normalized mass and energy as

M(t) =
∫ ∞

−∞
v(x, t)dx/

∫ ∞

−∞
v(x,0)dx (21)

and

E(t) =
∫ ∞

−∞
v(x, t)2dx/

∫ ∞

−∞
v(x,0)2dx, (22)

respectively, to control the accuracy of the numeri-
cal simulation. From Fig. 2b, we can conclude that
the solitary-wave is stable as both M(t) and E(t) are
conserved, i.e., within 0.5% deviation from the initial
value, which in fact has been checked to maintain up
to t = 1000. The accuracy of the numerical scheme
in this work is also clearly demonstrated in Fig. 2c
by comparing the exact analytic solution vexact(x,40)
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Fig. 4. (a) Evolution of the initial two solitary-waves interaction with amplitudes B0 = 2A0, A0 = 0.117, and the separation
between the waves as δ = 3. The higher amplitude wave decays and subsequently interacts with the other wave on the right.
(b) Almost elastic interaction is observed in the sense that the total energy deviates less than by 1% from the initial value and
is conserved at the moment of interaction occuring t ≈ 40. (c) The initial vs. the propagated profiles at t = 100. Notice the
appearances of three solitary-waves and the small oscillatory tail on the leftmost wave (dash-dotted curve).

(dash-dotted curve) and the group velocity v exact
g =

0.256 from (19), with vsimul(x,40) (dotted curve) and
vsimul

g = 0.254, respectively. The robust stability of the
bright solitary-wave for a different set of coefficients,
which belongs to the region (I) in Fig. 1d, is also shown
in Fig. 3 by comparing the analytic solitary-wave so-
lutions with the simulated profiles at t = 100. Fur-
thermore, we have numerically checked the stability
of dark and bright solitary-wave solutions, of which
the coefficients belong to the regions (II) and (III) in
Fig. 1d, respectively, showing the same behavior as in
Figs. 2 – 3. Therefore, in the following analysis we fo-
cus on the dynamics of bright solitary-waves of which
the coefficients belong to the region (I).

The fact that (1) is nonintegrable implies that even if
we can find solitary-wave solutions for particular coef-
ficients, it is not clear whether the equation has analytic
N-soliton solutions. A question we would like to ad-
dress in the present work is whether one can see from
the analysis of the two waves interaction if the solitary-

waves exhibit soliton-like behavior. For this purpose
we consider two initial solitary-waves using the same
coefficients as in Fig. 3 with initial profiles in the form

v(x,0) = A0 sech2(k′x−δ )+B0 sech2(k′x+δ ), (23)

where B0 = 2A0 with A0 = 0.117, and the separa-
tion between the two wave is δ = 3. Figure 4a shows
the evolution of the two solitary-waves interaction.
Since the initial amplitude B0 is twice that of the ex-
act solution, it decomposes into the leftmost solitary-
wave (smaller) with an oscillatory tail, and one with
higher amplitude with narrower width compared with
the initial profile as shown in Fig. 4c (dash-dotted
curve), respectively. Subsequently, the higher ampli-
tude solitary-wave travels faster and interacts with the
wave at the rightmost. From Fig. 4b we observe that
the whole interaction process is ‘almost elastic’ in the
sense that the energy loss is less than 1% from the ini-
tial value, and it saturates to a constant value for t > 40
owing to the presence of a small oscillatory tail. The
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Fig. 5. (a) Evolution of the normalized Fourier transformed spectrum |v(k,t)| as defined in (24). (b) The contour plot clearly
shows the two waves interaction at t ≈ 40. (c) Broadening of the Fourier spectrum is observed at t = 100 in comparison with
the initial profile at t = 0 due to the presence of the oscillatory tail of the small solitary-wave.

local minimum about t = 20 in Fig. 4b indicates the
moment at which the three solitary-waves exist simul-
taneously right before their interaction. However, the
fact that at t ≈ 40 the total energy returns to the ini-
tial value indicates that the interaction is exactly elas-
tic even though the whole process is almost elastic. To
understand the interaction in more detail, we plot in
Fig. 5a the evolution of the Fourier transformed v(x, t)
defined as

v(k, t) =
1

2π

∫ ∞

−∞
v(x,t)eikxdx. (24)

The contour plot in Fig. 5b portrays the broadening
of the Fourier spectrum as a result of the decay of
the higher amplitude solitary-wave and its subsequent
interaction with other waves, where the width of the
spectrum becomes minimum at t ≈ 40, at which the in-
teraction occurs. From Fig. 5c, we also find the broad-
ening of spectrum at t = 100 in comparison with that at

t = 0, due to the coexistence of the three solitary-waves
as shown in Fig. 4c.

Figure 6 shows the simulation for B0 = 3A0 by using
the same coefficients as in Figure 4. In Fig. 6a, we ob-
serve the decay of the higher amplitude solitary-wave,
however, contrary to Fig. 4, the subsequent interaction
of the three solitary-waves results in a bounded state of
two solitary-waves, i.e. a ‘bion’, which travels together
as a single coherent structure with a fixed peak-to-peak
separation [14, 15]. As for the case of Fig. 4, the inter-
action occurs at t ≈ 20, as shown in Fig 6b, at which
the energy loss is minimum but the total energy slightly
fluctuates thereafter. The bion indeed demonstrates a
remarkable robustness by keeping its shape even up to
t = 10,000. We have run many simulations with differ-
ent sets of coefficients to conclude that the formation of
a bion is a generic feature for the almost elastic inter-
action of the solitary-wave solutions of which the coef-
ficients belong to the regions (I) and (III), in particular
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Fig. 6. (a) Evolution of two initial solitary-waves with amplitudes B0 = 3A0, A0 = 0.117, and δ = 3. The higher amplitude
wave decays and subsequently interacts with the other wave on the right. (b) Almost elastic interaction occurs at t ≈ 20, after
which the bounded state of two solitary-waves, i.e. a bion, is formed, which shows stable propagation. (c) The initial vs.
propagated profiles at t = 100. A stable and fast traveling solitary-wave is shown at the rightmost (dash-dotted curve), while
the bion does not travel.

for large nonlinear r values, as in Figure 1d. The bion
is an interesting feature, which has not been found in
the previous numerical investigations [15 – 17] of the
fifth-order KdV equations at various coefficient limits
of (1), and it deserves more studies.

We also point out that the analytic solitary-wave so-
lutions in Eq. (16) behaves much like the KdV soliton,
which may shed light on the possibility of finding ana-
lytic N-soliton solutions.

4. Conclusions

We have found new analytic solitary-wave solu-
tions, which satisfy the zero background condition at
infinity, of the general fifth-order KdV equation under
the balance constraint in (15) with the allowed coeffi-
cient regions in Fig. 1d, and discussed the method for
obtaining kink-type solitary-waves and rational solu-
tions with nonzero background [10 – 12]. By perform-
ing numerical simulations, we have shown the stability

of bright solitary-wave solutions, of which the coeffi-
cients belong to the constraint region (I) in Figure 1d.
Both the dark and bright solitary-wave solutions be-
long to the coefficient regions (II) and (III), respec-
tively, and have been found to be stable. The question
whether the stable solitary-wave solutions can exhibit
soliton-like dynamics has been investigated, for exam-
ple, with α and γ which belong to the coefficient re-
gion (I) in Fig. 1d but with large nonlinear r values,
by considering the interactions of solitary-waves with
two different amplitudes. We have concluded that the
soliton-like interaction occurs due to the almost en-
ergy conserving elastic interaction as depicted in Fig-
ure 4b. Furthermore, in Fig. 6, it was shown that the
bion can be formed as a result of almost elastic in-
teraction nature of the two solitary-waves. In conclu-
sion, we demonstrated for some coefficient regions in
Fig. 1d the stability of the solitary-wave solution with
zero background and the soliton-like behavior during
the interaction of the waves. However, more extensive
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numerical simulations are needed to explore other co-
efficient regions too. Also, the mathematical question
whether (1) can be transformed to a KdV hierarchy de-
serves future investigation.
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