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We solve the inverse nodal problem for the diffusion operator. In particular, we obtain a reconstruc-
tion of the potential function and its derivatives using only nodal data. Results are a generalization of

Law’s and Yang’s works.
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1. Introduction

The inverse nodal problem was initiated by
McLaughlin [1], who proved that the Sturm-Liouville
problem is uniquely determined by any dense subset
of the nodal points. Some numerical schemes were
given by Hald and McLaughlin [2] for the reconstruc-
tion of the potential. Recently Law, Yang and other
authors have reconstructed the potential function and
its derivatives of the Sturm-Liouville problem from the
nodal points [3—7].

In this paper, we are concerned with the inverse
nodal problem for the diffusion operator on a finite in-
terval. We reconstruct the potential function and all its
derivatives by using Law’s and Yang’s method [7].

The diffusion operator is written as

Ly =—y"+[q(x) +2Ap(x)]y, (1.1)

where the function g(x) € L*[0,7], p(x) € L*[0,x].
Some spectral problems were extensively solved for
the diffusion operator in [§—11].

Consider the problem

Lly| =A%, (1.2)
y(0)=1, y(0)=—h, (1.3)
y(m,A)+Hy(m,A) =0, (1.4)

where i and H are finite numbers.
Let A, be the n-th eigenvalue and 0 < x| < ...
<x!<m,i=1,2,...,n—1,the nodal points of the n-th

eigenfunction. Also let I]' = [x}',x}, ;] be the i-th nodal
domain of the n-th eigenfunction and let I]' = |I'| =

¥}, | —x7' be the associated nodal length. Let j,(x) be
(n)

the largest index j such that 0 < x ;<X

A denotes the difference operator Aa; = a; ;| — a;.
Inductively, for k£ > 1, Aka,- = Ak’laiﬂ — Ak’lai, and
we introduce the difference quotient operator &:

air1—a; Aag; S a — 8 g
oa; = e e AP &Fa; = it L
Xiyl — Xi i li

2. Main Results

Lemma 1. [12] Assume that g € L?[0, 7]. Then, as
n — oo for the problem (1.2)—(1.4),

n
X

, (i=Hrm h 1

= _m-kz—lnz/(l—i—colent)[q(t)

1
4 22,p(1)]di + 0 (F) : 2D
71: 1 i1
"= . + T / (1+cos2A,t)[q(t)
T n X/? (2'2)

+2A,p(0)]dt + O (%) .
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Lemma 2. Suppose that f € L?[0,
most every x € [0, ], with j = j,(x),

7). Then for al-

n
x;+|

s B
lim “ [ far = f).

n
X"
J

Theorem 1. [12] Suppose that g € L2[0, 7], then

22,17
T

Proposition 1. If g is a continuous function, then
1
@ lim VAL =z and [V =~ +0(}):
Nn—o0 n n
(b) ll(ﬁ/ll@m =140 (rll) for any fixed k,m € N;

g(x) = lim A,

n—oo

=2, —2p(x ))

©) gm <A — - <4qm, where g, = r[glir]lq(x) and
T

7[2
™)
= ma .
am [O’ﬂ’]“l(x)
Lemma 3. [7] If ¢ € CY[0,7], then for k =
1,...,N,AkL; = O(n~**+3)) as n — oo and the order es-
timate is independent of j.

m
Lemma 4. [7] Let @; = Y ¢;; with each ¢;; =
i=1

(n)

ki
p[;[l ©;jip, where each ¢;;, € Uj . Suppose P; =

O(n™") and q is sufficiently smooth. Then §¥®; =
O(n™) forallk € N.

Lemma 5. [7] Suppose f € CV[0,7] and ®; =
Xj+1

[ f(x)dx. Then &*®; = O(n!) for any k =

Xj
0,1,...,N.

Theorem 2. [7] Let @, (xj) = yi(xj)va(x;)...
Vn(x;), where y;(x;) = x4, and k; € NU{0}. If ¢
is C* on [0, ], then

o(1), 0<k<m-—1,
5k¢m(xj) =< m!'4+0(n, k=m,
o(n=?), k>m+1.

Theorem 3. If g € CVT'[0,x], then ¢ (x) =
8%q(x;) = 22,p(x) + O(n~1) fork=0,1,...,N, where
J = Jjn(x). The order estimate is uniformly valid for
compact subsets of [0, 7].

Remark: Fork=1,... N,

x] ... xkx‘llc
Loxjpr - 2
Vi(xj) = :
L
be a (k+ 1) x (k+ 1) Vandermonde matrix. It is well
known that
k |m—1 —
det Vi (x;) = H H Z Livp
m=1 | i=0

To prove Theorem 3, we need the following lemma.

Lemma 6.
mI_—Il l;n+k_m 1 ( 1 )
— = +0(-). 2.3)
det Vi (x;) I_kI ! n
m=1
Next, we consider the following (k+ 1) x (k+1)
matrix:
X 4 glxy)
Loxj o x]ﬁl q(xjs1)
A= i
Loxjpe o X]]:k q(xjik)
After some operations, we obtain
detA =1; l]+] /+k 1
51 (-ij o 561()61’)
1 X . q(x;
PR ORI (x)
o(1)  &(xjk—1) 0q(xXjrx—1)
= (1) (lj41) Livr1
5 1 5 o gz(xj)
1 X q(x;
PO (x)
8(1) 8(x;) 8% q(x;)

Let B be the matrix at the right-hand side. By Lemma 4
and Theorem 2,

det B = (8x})(6%:2) ... (8 1) (34 g(x,))

k—1

1o (niz) — T] (m)84(x;) + 0 (%) .

m=0
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Proof of Theorem 3: Fork=1,2,...,N, let

1 x XK q(x)
| T4
i xj'-i-k x’,‘+k q(x}-ﬁ-k)
By Rolle’s theorem, g(x;) = g(xj1) = ... = g(xjx) =

0 implies that there is some &y j1; € (xj4i,xj4i+1) such
that g'(&;,j+i) = 0. When we repeat the process, we
can find that & ; € (xj,x;4) such that g(k)(ék.j) =0.
In view of the definition of g, ¢ (& j)det Vi(xj) =
k!det A. Hence

- det B
q™ (&) = RO Y L) e

det Vk(x]') ’

By Lemma 6 ¢®(& ;) = 8%q(x;) + O(L), since
g € C*qW(x) = W (&) — 2Ap(x) + O(;) =
84q(x;) = 2Aup(x) + O(;)).

Theorem 4. Suppose that ¢ in (1.1) is C¥*! on
[0,m] (N > 1), and let j = j,(x) for each x € [0,7].
Then, as n — oo,

2n
o) =1 (“;;lf 2 zp<x>) +o(1).

and, forallk=1,2,...,N,

o8k
I

q®(x) —22,85p(x;) —22,p P (x) +O(1).

Proof: The uniform approximation for g is evi-
dent. Suppose that g is continuously differentiable on
[0, r]. Apply the intermediate value theorem on Propo-

sition Ic, then there is some & ;") € (x(") £ ) such

that Fo

a

a4 I/Z_Hq(éf"))w(L)
T 2 T A, 22/

Hence

AR . 1
m( nf—l)—q@} >>—o(n—2>,

A2
2%, ( = —p<x>) #2200 -a(¢") =0 5z ).

Applying the mean value theorem, when n is suffi-
ciently large, then

4(x) = g(&") = 22,p(x) + O (l) |

Then we employ a modified Priifer substitution due to
Ashbaugh-Benguria [13] to solve the boundary condi-
tions & and H, x = 0 and x = 7, respectively:

y = r(x)sin VA6 (x),
Y = VAr(x)cos VAO(x),
so that

q(x)sin® vV/A6(x)

0’ = cos> VA0 (x) — 7 2.4

—2p(x)sin> VA6 (x).
Integrating (2.4) from x; to x; 1,
Xj+1

T
\//l_n: /coszx/IG(x)dx

Xj
Xj+1

—% / q(x)sin® VA6 (x)dx (2.5)
/p(x)sinz\/ze(x)dx,

Xj

-2

it results by Lemma 5 from (2.5) that

where
1 & g®(x)) i 1
C”zxnk;(kH)!l’ O<n_4)’
N (k) (k.
o P (x;) k+1 _ L
d’_k;(k—irl)!lj =%\2)

Summarizing from (2.6),

27/ Ay
j

q(xj)=— —2Aup(xj) +24,(cj+d;j)+O(1).
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Therefore

— 22,8p(x;)+0(1),
+

277:\/7
] J

and so, fork=1,2,...,N

5q ——27:\/_5“( f)

lzl]-i-l
—22,8*p(x;) +0(1).

2.7)

If we use the results of Theorem 3 and Theorem 5, we
get

g™ (x) = 8q(xj) — 2A,p(x) + O(n "),

g™ (x) = — 22,8 p(xj) —2Aup(x) +O(1).

22,2841,
T
Theorem 5. Assume that g is C¥*! on [0, 7]. Then,
fork=1,2,...,N,

24,32 8k1;

8kq(xj) = —22,8%p(xj) + O(1).

The estimate is independent of j.
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gt [ ZAL) gk (’1 Al >+0< 1 ) 2.8)
ljlj+1 lj
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