Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 12, 2016

Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models

  • Rohallah Razavi EMAIL logo , Azam Rahmatinejad , Tayeb Kakavand , Fariba Taheri , Maghsood Aghajani and Asghar Khooy

Abstract

In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.

PACS Numbers:: 21.10.Ma; 24.10.-i

Corresponding author: Rohallah Razavi, Faculty of Science, Department of Physics, Imam Hossein Comprehensive University, Tehran, Iran, E-mail:

Acknowledgments

We would like to thank Dr. Arjan Koning for useful comments.

References

[1] A. J. Koning, S. Hilaire, and S. Goriely, Nucl. Phys. A 810, 13 (2008).10.1016/j.nuclphysa.2008.06.005Search in Google Scholar

[2] H. A. Bethe, Phys. Rev. 50, 332 (1936).Search in Google Scholar

[3] A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).Search in Google Scholar

[4] M. Guttormsen, B. Jurado, J. N. Wilson, M. Aiche, L. A. Bernstein, et al., Phys. Rev. C 88, 024307 (2013).10.1103/PhysRevC.88.024307Search in Google Scholar

[5] R. Razavi and T. Kakavand, Nucl. Technol. Radiat. 26, 69 (2011).Search in Google Scholar

[6] T. von Egidy, H. H. Schmidt, and A. N. Behkami, Nucl. Phys. A 481, 189 (1988).10.1016/0375-9474(88)90491-5Search in Google Scholar

[7] T. Ericson, Nucl. Phys. 11 481 (1959).10.1016/0029-5582(59)90291-3Search in Google Scholar

[8] T. von Egidy and D. Bucurescu, Phys. Rev. C 72, 044311 (2005).10.1103/PhysRevC.72.044311Search in Google Scholar

[9] T. von Egidy and D. Bucurescu, Phys. Rev. C 80, 054310 (2009).10.1103/PhysRevC.80.054310Search in Google Scholar

[10] RIPL-3 Handbook for calculation of nuclear reaction; http://www-nds.iaea.org/RIPL-3/ (2009).Search in Google Scholar

[11] D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003).Search in Google Scholar

[12] R. Razavi, Phys. Rev. C 88, 014316 (2013).10.1103/PhysRevC.88.014316Search in Google Scholar

[13] R. Razavi, A. N. Behkami, and S. Mohammadi, Phys. Scr. 86, 045201 (2012).Search in Google Scholar

[14] R. Razavi, A. N. Behkami, and V. Dehghani, Nucl. Phys. A 930, 57 (2014).10.1016/j.nuclphysa.2014.07.016Search in Google Scholar

[15] A. J. Koning, S. Hilaire, and S. Goriely, TALYS-1.6, Nuclear Research and Consultancy Group, www.talys.eu. (2013).Search in Google Scholar

[16] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).10.1016/S0375-9474(02)01321-0Search in Google Scholar

[17] Y. L. Zhao, M. Tanikawa, K. Sueki, I. Nishinaka, K. Tsukada, et al., Radiochim. Acta 86, 79 (1999).10.1524/ract.1999.86.34.79Search in Google Scholar

[18] L. F. Bellido, V. J. Robinson, and H. E. Sims, Radiochim. Acta 64, 11 (1994).10.1524/ract.1994.64.1.11Search in Google Scholar

[19] V. A. Rubchenya, W. H. Trzaska, D. N. Vakhtin, J. Äystö, P. Dendooven, et al., Nucl. Instrum. Methods Phys. Res. A 463, 653 (2001).10.1016/S0168-9002(01)00176-0Search in Google Scholar

Received: 2015-8-1
Accepted: 2015-12-3
Published Online: 2016-1-12
Published in Print: 2016-2-1

©2016 by De Gruyter

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2015-0339/html
Scroll to top button