## Contents

Qun Wei, Haiyan Yan, Xuanmin Zhu, Zhengzhe Lin and Ronghui Yao  
**Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide**  —— 1

Zhe Gao, Yi-Tian Gao, Chuan-Qi Su, Qi-Min Wang and Bing-Qing Mao  
**Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre**  —— 9

Ke Wang, Xu Feng, Wenlin Feng, Shasha Shi, Yao Li and Chao Zhang  
**Effect of Trace Fe³⁺ on Luminescent Properties of CaWO₄:Pr³⁺ Phosphors**  —— 21

Hui-Xian Jia, Yu-Jun Liu and Ya-Ning Wang  
**Rogue-Wave Interaction of a Nonlinear Schrödinger Model for the Alpha Helical Protein**  —— 27

An Zhao, Ning-de Jin, Ying-yu Ren, Lei Zhu and Xia Yang  
**Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil–Gas–Water Three-Phase Flow**  —— 33

A. Li-Ta, Zhang Yu, Bai Jian-Ping, Zhang Shuai, Li Gen-Quan, Chen Shan-Jun and Tian Yong-Hong  
**Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)ₙ⁺ (n = 1–5) Clusters**  —— 45

Friedwardt Winterberg  
**Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation**  —— 53

Mohamed Chabab, Abdelwahed El Batoul and Mustapha Oulne  
**Closed Analytical Solutions of the D-Dimensional Schrödinger Equation with Deformed Woods–Saxon Potential Plus Double Ring-Shaped Potential**  —— 59

Zhong-Zhou Lan, Yi-Tian Gao, Jin-Wei Yang, Chuan-Qi Su and Da-Wei Zuo  
**Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2 + 1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation**  —— 69

Rohana Abdul Hamid, Roslinda Nazar and Ioan Pop  
**The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model**  —— 81

### Rapid Communication

Abbas Alshehabi and Jun Kawai  
**Extrinsic and Intrinsic Contributions to Plasmon Peaks in Solids**  —— 91