Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 22, 2017

Mechanical, Electronic, and Optical Properties of β-B6O: First-Principles Calculations

  • Ruike Yang EMAIL logo , Shaowei Ma , Qun Wei and Zheng Du


The mechanical, electronic, and optical properties of β-B6O are calculated by first-principles. The structural optimization and all properties are calculated by the method of generalized gradient approximation – Perdew, Burke and Ernzerhof (PBE). The hardness of β-B6O is 39 GPa under a pressure of 0 GPa, which indicates that it belongs to a hard material. The band gap is indirect with a value of 1.836 eV, showing that β-B6O is a semiconductor. The research of the electron localization function shows that the bonds of β-B6O are covalent bonds, which can increase the stability of the compound. The phonon dispersion curves present the dynamical stability of β-B6O under pressures of 0 and 50 GPa. The optical properties of β-B6O are also calculated. In the energy range from 0 to 18 eV, β-B6O presents high reflectivity; it has a strong absorption in the energy range from 3 to 18 eV. The refractive index results show that light propagates through the β-B6O in a difficult manner in the energy range from 6.9 to 16.5 eV. In addition, the energy of the plasma frequency for β-B6O is 16.6 eV and the peak value of the loss function is 13.6. These properties provide the basis for the development and application of β-B6O.


This work was supported by the Natural Science Basic Research plan in Shaanxi Province of China (grant No.2016JM1026) and the 111 Project (B17035).


[1] R. B. Kaner, J. J. Gilman, and S. H. Tolbert, Science 308, 1268 (2005).10.1126/science.1109830Search in Google Scholar PubMed

[2] O. O. Kurakevych, J. Superhard Mater. 31, 139 (2009).10.3103/S1063457609030010Search in Google Scholar

[3] Q. Wei, Q. Zhang, H. Yan, and M. Zhang, J. Mater. Sci. 52, 2385 (2017).10.1007/s10853-016-0564-6Search in Google Scholar

[4] F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Nature 176, 51 (1955).10.1038/176051a0Search in Google Scholar

[5] Y. Tian, B. Xu, D. Yu, Y. Wang, Y. Jiang, et al., Nature 493, 385 (2013).10.1038/nature11728Search in Google Scholar PubMed

[6] P. F. McMillan, Nat. Mater. 1, 19 (2002).10.1038/nmat716Search in Google Scholar PubMed

[7] D. He, Y. Zhao, L. Daemen, J. Qian, T. D. Shen, et al., Appl. Phys. Lett. 81, 643 (2002).10.1063/1.1494860Search in Google Scholar

[8] H. Dong, A. R. Oganov, Q. Wang, S.-N. Wang, Z. Wang, et al., Sci. Rep. 6, 31288 (2016).10.1038/srep31288Search in Google Scholar PubMed PubMed Central

[9] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).10.1103/PhysRev.136.B864Search in Google Scholar

[10] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).10.1103/PhysRev.140.A1133Search in Google Scholar

[11] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

[12] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).10.1103/PhysRevLett.45.566Search in Google Scholar

[13] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).10.1103/PhysRevB.23.5048Search in Google Scholar

[14] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, et al., Z. Kristallogr. Cryst. Mater. 220, 567 (2005).10.1524/zkri.220.5.567.65075Search in Google Scholar

[15] Q. Zhang, Q. Wei, H. Y. Yan, X. M. Zhu, J. Q. Zhang, et al., Chinese Physics B. 26, 066201 (2017).10.1088/1674-1056/26/6/066201Search in Google Scholar

[16] X. Li, H. Cui, and R. Zhang. Sci. Rep. 6, 39790 (2016).10.1038/srep39790Search in Google Scholar PubMed PubMed Central

[17] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, et al., J. Phys. Condens. Matt. 14, 2717 (2002).10.1088/0953-8984/14/11/301Search in Google Scholar

[18] R. Hill, Proc. Phys. Soc. Sec. A 65, 349 (1952).10.1088/0370-1298/65/5/307Search in Google Scholar

[19] Z. Tian, L. Sun, J. Wang, and J. Wang, J. Eur. Ceram. Soc. 35, 1923 (2015).10.1016/j.jeurceramsoc.2015.01.001Search in Google Scholar

[20] Q. Wei, Q. Zhang, H. Yan, and M. Zhang, Materials 9, 840 (2016).10.3390/ma9100840Search in Google Scholar PubMed PubMed Central

[21] X. Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).10.1016/j.intermet.2011.03.026Search in Google Scholar

[22] J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, Oxford 1985.Search in Google Scholar

[23] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).10.1063/1.458517Search in Google Scholar

[24] Z. Y. Jiao, S. H. Ma, and J. F. Yang, Solid State Sci. 13, 331 (2011).10.1016/j.solidstatesciences.2010.11.030Search in Google Scholar

[25] R. Yang, C. Zhu, Q. Wei, and Z. Du. J. Phys. Chem. Sol. 104, 68 (2017).10.1016/j.jpcs.2016.12.032Search in Google Scholar

[26] S. Saha, T. P. Sinha, and A. Mookerjee, Phys. Rev. B 62, 8828 (2000).10.1103/PhysRevB.62.8828Search in Google Scholar

[27] G. Yu, C. H. Lee, A. J. Heeger, and S.-W. Cheong, Phys. C Supercond. 203, 419 (1992).10.1016/0921-4534(92)90051-DSearch in Google Scholar

[28] J. S. De. Almeida and R. Ahuja, Phys. Rev. B 73, 165102 (2006).10.1103/PhysRevB.73.165102Search in Google Scholar

Received: 2017-5-10
Accepted: 2017-6-26
Published Online: 2017-7-22
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.6.2023 from
Scroll to top button