Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 7, 2017

Flow and Heat Transfer in a Newtonian Nanoliquid due to a Curved Stretching Sheet

  • Pradeep Ganapathi Siddheshwar , Meenakshi Nerolu and Igor Pažanin EMAIL logo

Abstract

Flow of a Newtonian nanoliquid due to a curved stretching sheet and heat transfer in it is studied. The governing nonlinear partial differential equations are reduced to nonlinear ordinary differential equations with variable coefficients by using a similarity transformation. The flow characteristics are studied using plots of flow velocity components and the skin-friction coefficient as a function of suction-injection parameter, curvature, and volume fraction. Prescribed surface temperature and prescribed surface heat flux are considered for studying the temperature distribution in the flow. The thermophysical properties of 20 nanoliquids are considered in the investigation by modeling them through the use of phenomenological laws and mixture theory. The results of the corresponding problem involving a plane stretching sheet is obtained as a particular case of those obtained in the present paper. Skin friction coefficient and Nusselt number are evaluated and it is observed that skin friction coefficient decreases with concentration of nanoparticles in the absence as well as presence of suction where as Nusselt number increases with increase in concentration of nanoparticles in a dilute range.

Acknowledgments

The third author (IP) has been supported by the Croatian Science Foundation (project 3955: Mathematical modeling and numerical simulations of processes in thin or porous domains).

References

[1] B. Sakiadis, AIChE J. 7, 26 (1961).10.1002/aic.690070108Search in Google Scholar

[2] B. Sakiadis, AIChE J. 7, 221 (1961).10.1002/aic.690070211Search in Google Scholar

[3] B. Sakiadis, AIChE J. 7, 467 (1961).10.1002/aic.690070325Search in Google Scholar

[4] L. J. Crane, Z. Angew. Math. Phys. 21, 645 (1970).10.1007/BF01587695Search in Google Scholar

[5] H. Andersson, Acta Mech. 158, 121 (2002).10.1007/BF01463174Search in Google Scholar

[6] A. P. Amir and B. B. Setareh, Phys. Lett. A 372, 3678 (2008).10.1016/j.physleta.2008.02.050Search in Google Scholar

[7] N. Bachok, A. Ishak, and I. Pop, Phys. Lett. A 374, 4075 (2010).10.1016/j.physleta.2010.08.032Search in Google Scholar

[8] T. Hayat, S. Saif, and Z. Abbas, Phys. Lett. A 372, 5037 (2008).10.1016/j.physleta.2008.03.066Search in Google Scholar

[9] P. G. Siddheshwar, U. S. Mahabaleshwar, and A. Chan, Int. J. Appl. Mech. Engg 20, 589 (2015).10.1515/ijame-2015-0038Search in Google Scholar

[10] P. G. Siddheshwar and U. S. Mahabaleswar, Int. J. Nonlin. Mech. 40, 807 (2005).10.1016/j.ijnonlinmec.2004.04.006Search in Google Scholar

[11] P. G. Siddheshwar, U. S. Mahabaleswar, and H. I. Andersson, Int. J. Appl. Mech. Engg 18, 955 (2013).10.2478/ijame-2013-0059Search in Google Scholar

[12] P. G. Siddheshwar and N. Meenakshi, ASME J. Heat Transfer 138, 094501 (2016).10.1115/1.4033460Search in Google Scholar

[13] M. Sajid, N. Ali, T. Javed, and Z. Abbas, Chin. Phys. Lett. 27, 024703 (2010).10.1088/0256-307X/27/2/024703Search in Google Scholar

[14] Z. Abbas, M. Naveed, and M. Sajid, J. Engg Thermophys. 22, 337 (2013).10.1134/S1810232813040061Search in Google Scholar

[15] N. C. Rosca and I. Pop, Eur. J. Mech-B/Fluids 51, 61 (2015).10.1016/j.euromechflu.2015.01.001Search in Google Scholar

[16] W. Khan and I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010).10.1016/j.ijheatmasstransfer.2010.01.032Search in Google Scholar

[17] O. D. Makinde and A. Aziz, Int. J. Therm. Sci. 50, 1326 (2011).10.1016/j.ijthermalsci.2011.02.019Search in Google Scholar

[18] M. Hassani, M. M.Tabar, H. Nemati, G. Domairry, and F. Noori, Int. J. Therm. Sci. 50, 2256 (2011).10.1016/j.ijthermalsci.2011.05.015Search in Google Scholar

[19] M. Mustafa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat, Int. J. Heat Mass Transfer 54, 5588 (2011).10.1016/j.ijheatmasstransfer.2011.07.021Search in Google Scholar

[20] K. Vajravelu, K. V. Prasad, J. Lee, C. Lee, and I. Pop, Int. J. Therm. Sci. 50, 843 (2011).10.1016/j.ijthermalsci.2011.01.008Search in Google Scholar

[21] O. D. Makinde, Appl. Math. Mech. 33, 1545 (2012).10.1007/s10483-012-1642-8Search in Google Scholar

[22] E. Elbashbeshy, T. G. Emam, M. S. El-Azab, and K. M. Abdelgaber, Therm. Sci. 20, 1813 (2016).10.2298/TSCI140512135ESearch in Google Scholar

[23] W. Ibrahim, B. Shankar, and M. M. Nandeppanavar, J. Heat Mass Transfer 56, 1 (2013).10.1016/j.ijheatmasstransfer.2012.08.034Search in Google Scholar

[24] A. Malvandi, F. Hedayati, and D. D. Ganji, Powder Technol. 253, 377 (2014).10.1016/j.powtec.2013.11.049Search in Google Scholar

[25] A. Noghrehabadi, R. Pourrajab, and M. Ghalambaz, Int. J. Therm. Sci. 54, 253 (2012).10.1016/j.ijthermalsci.2011.11.017Search in Google Scholar

[26] S. S. Nourazar, M. Habibi Matin, and M. Simiari, J. Appl. Math. 2011, 1 (2011).Search in Google Scholar

[27] R. Sharma, A. Ishak, and I. Pop, Math. Prob. Engg 2013, 1 (2013).10.1155/2013/724547Search in Google Scholar

[28] D. Sinha, P. Jain, P. G. Siddheshwar, and N. S. Tomer, Int. J. Appl. Comput. Math. 1 (2016).Search in Google Scholar

[29] D. Sinha, P. Jain, P. G. Siddheshwar, and N. S.Tomer, J. Appl. Fluid Mech. 9, 463 (2016).10.18869/acadpub.jafm.68.224.23666Search in Google Scholar

[30] M. Turkyilmazoglu, Chem. Engg. Sci. 84, 182 (2012).10.1016/j.ces.2012.08.029Search in Google Scholar

[31] N. A. Yacob, A. Ishak, I. Pop, and K. Vajravelu, Nanoscale Res. Lett. 6, 1 (2011).10.1186/1556-276X-6-314Search in Google Scholar PubMed PubMed Central

[32] E. Magyari, Acta Mech. 222, 381 (2011).10.1007/s00707-011-0532-9Search in Google Scholar

[33] P. G. Siddheshwar and N. Meenakshi, Int. J. Appl. Comput. Math. 3, 271 (2017).10.1007/s40819-015-0106-ySearch in Google Scholar

[34] H. C. Brinkman, J. Chem. Phys. 20, 571 (1952).10.1063/1.1700493Search in Google Scholar

[35] R. L. Hamion and O. K. Crosser, Ind. Engg Chem. Fund. 1, 187 (1962).10.1021/i160003a005Search in Google Scholar

Received: 2017-5-8
Accepted: 2017-7-12
Published Online: 2017-8-7
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.5.2023 from https://www.degruyter.com/document/doi/10.1515/zna-2017-0156/html
Scroll to top button