Abstract
In this article, the flow and heat transfer of a non-Newtonian nanofluid between two coaxial cylinders through a porous medium has been investigated. The velocity, temperature, and nanoparticles concentration of the present mathematical model are governed by a system of nonlinear ordinary differential equations. The objective of this article is to obtain new exact solutions for the temperature and the nanoparticles concentration and, therefore, compare them with the previous approximate results in the literature. Moreover, the velocity equation has been numerically solved. The effects of the pressure gradient, thermophoresis, third-grade, Brownian motion, and porosity parameters on the included phenomena have been discussed through several tables and plots. It is found that the velocity profile is increased by increasing the pressure gradient parameter, thermophoresis parameter (slightly), third-grade parameter, and Brownian motion parameter (slightly); however, it decreases with an increase in the porosity parameter and viscosity power index. In addition, the temperature and the nanoparticles concentration reduce with the strengthen of the Brownian motion parameter, while they increase by increasing the thermophoresis parameter. Furthermore, the numerical solution and the physical interpretation in the literature for the same problem have been validated with the current exact analysis, where many remarkable differences and errors have been concluded. Therefore, the suggested analysis may be recommended with high trust for similar problems.
Acknowledgments
This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G-567-363-38. The authors, therefore, acknowledge with thanks DSR for technical and financial support.
References
[1] T. Metal, S. Oh, and H. Gegel, Metal Forming Fundamentals and Applications, American Society of Metals, Metals Park, OH 1979.Search in Google Scholar
[2] M. V. Karwe and Y. Jaluria, ASME J. Heat Transfer 119, 612 (1991).10.1115/1.2910609Search in Google Scholar
[3] W. C. W. Chan, Bio-Applications of Nanoparticles, Springer Science, New York 2007.10.1007/978-0-387-76713-0Search in Google Scholar
[4] S. U. S. Choi, Dev. Appl. Non-Newtonian Flows 66, 99 (1995).Search in Google Scholar
[5] R. Saidur, K. Y. Leong, and H. A. Mohammad, Rene. Sustain. Ener. Rev. 15, 1646 (2011).10.1016/j.rser.2010.11.035Search in Google Scholar
[6] X.-Q. Wang and A. S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007).10.1016/j.ijthermalsci.2006.06.010Search in Google Scholar
[7] X.-Q. Wang and A. S. Mujumdar, Brazilian J. Chem. Eng. 25, 631 (2008).10.1590/S0104-66322008000400002Search in Google Scholar
[8] J. A. Eastman, S. L. S. S. Choi, W. Yu, and L. J. Thompson, Appl. Phys. Lett. 78, 718 (2001).10.1063/1.1341218Search in Google Scholar
[9] Y. Xuan and Q. Lin, J. Heat Transfer 125, 151 (2003).10.1115/1.1532008Search in Google Scholar
[10] N. Bachok, A. Ishak, and I. Pop, Int. J. Therm. Sci. 49, 1663 (2010).10.1016/j.ijthermalsci.2010.01.026Search in Google Scholar
[11] E. H. Aly and A. Ebaid, J. Comp. Theor. Nanosci. 10, 2591 (2013).10.1166/jctn.2013.3253Search in Google Scholar
[12] M. A. A. Hamad, Int. Commun. Heat Mass Transfer 38, 487 (2011).10.1016/j.icheatmasstransfer.2010.12.042Search in Google Scholar
[13] A. Ebaid and M. A. Al Sharif, Z. Naturforsch. A 70, 471 (2015).10.1515/zna-2015-0125Search in Google Scholar
[14] A. Ebaid, F. Al Mutairi, and S. M. Khaled, Adv. Math. Phys. 2014 (2014), Article ID 538950, 9 pp. https://doi.org/10.1155/2014/538950.10.1155/2014/538950Search in Google Scholar
[15] F. Mabood, W. A. Khan, and M. M. Rashidi, Therm. Sci. 21, 289 (2017).10.2298/TSCI140424035MSearch in Google Scholar
[16] E. H. Aly and A. Ebaid, Abstr. Appl. Anal. 2013(2013), Article ID 721578, 14 pp. https://doi.org/10.1155/2013/721578.10.1155/2013/721578Search in Google Scholar
[17] M. Hatami and D. D. Ganji, J. Mol. Liq. 188, 155 (2013).10.1016/j.molliq.2013.10.009Search in Google Scholar
[18] A. Ebaid, Comp. Math. Appl. 68, 77 (2014).10.1016/j.camwa.2014.05.008Search in Google Scholar
[19] A. Ebaid and S. H. Alatawi, Z. Naturforsch. A 69, 199 (2014).10.5560/zna.2014-0010Search in Google Scholar
[20] D. Yadav, G. S. Agrawal, and R. Bhargava, Int. J. Eng. Sci. 49, 1171 (2011).10.1016/j.ijengsci.2011.07.002Search in Google Scholar
[21] D. Yadav, R. Bhargava, and G. S. Agrawal, Int. J. Heat Mass Transfer 63, 313 (2013).10.1016/j.ijheatmasstransfer.2013.04.003Search in Google Scholar
[22] D. Yadav and M. C. Kim, Comp. Fluids 117, 139 (2015).10.1016/j.compfluid.2015.05.008Search in Google Scholar
[23] P. Valinataj-Bahnemiri, A. Ramiar, S. A. Manavi, and A. Mozaffari, Eng. Sci. Tech. Int. J. 18, 727 (2015).Search in Google Scholar
[24] D. Yadav, C. Kim, J. Lee, and H. H. Cho, Comp. Fluids 121, 26 (2015).10.1016/j.compfluid.2015.07.024Search in Google Scholar
[25] D. Yadav and J. Lee, Euro. Phys. J. Plus 130, 162 (2015).10.1140/epjp/i2015-15162-9Search in Google Scholar
[26] D. Yadav, J. Lee, and H. H. Cho, Powder Technol. 286, 592 (2015).10.1016/j.powtec.2015.08.048Search in Google Scholar
[27] D. Yadav, D. Lee, H. H. Cho, and J. Lee, J. Porous Media 19, 31 (2016).10.1615/JPorMedia.v19.i1.30Search in Google Scholar
[28] D. Yadav, J. Wang, R. Bhargava, J. Lee, and H. H. Cho, Appl. Therm. Eng. 103, 1441 (2016).10.1016/j.applthermaleng.2016.05.039Search in Google Scholar
[29] D. Yadav, D. Nam, and J. Lee, J. Taiwan Institute Chem. Eng. 58, 235 (2016).10.1016/j.jtice.2015.07.008Search in Google Scholar
[30] D. Yadav and J. Lee, J. Appl. Fluid Mech. 9, 519 (2016).10.18869/acadpub.jafm.68.225.24433Search in Google Scholar
[31] D. Yadav, G. S. Agrawal, and J. Lee, Ain Shams Eng. J. 7, 431 (2016).10.1016/j.asej.2015.05.005Search in Google Scholar
[32] D. Yadav, R. A. Mohamed, H. H. Cho, and J. Lee, J. Appl. Fluid Mech. 9, 2379 (2016).10.18869/acadpub.jafm.68.236.25048Search in Google Scholar
[33] D. Yadav, J. Appl. Fluid Mech. 10, 763 (2017).10.18869/acadpub.jafm.73.240.27475Search in Google Scholar
[34] D. Yadav, Int. J. Appl. Comp. Math. (2017). doi: 10.1007/s40819-017-0319-3.10.1007/s40819-017-0319-3Search in Google Scholar
[35] F. M. Hady, F. S. Ibrahim, S. M. Abdel-Gaied, and M. R. Eid, Appl. Math. Mech. (Eng. Edn), 32, 1577 (2011).10.1007/s10483-011-1524-7Search in Google Scholar
[36] F. M. Hady, M. R. Eid, and M. A. Ahmed, Appl. Math. Info. Sci. Lett. 243, 43 (2014).Search in Google Scholar
[37] M. R. Eid, S. M. Abdel-Gaied, and A. A. Idarous, Jokull J. 65, 76 (2015).Search in Google Scholar
[38] M. R. Eid, J. Mol. Liq. 220, 718 (2016).10.1016/j.molliq.2016.05.005Search in Google Scholar
[39] M. R. Eid, J. Nanofluids 6, 550 (2017).10.1166/jon.2017.1347Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston