Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 7, 2017

The Residual Symmetry and Consistent Tanh Expansion for the Benney System

  • Zheng-Yi Ma EMAIL logo , Jin-Xi Fei and Jun-Chao Chen

Abstract

The residual symmetry of the (2+1)-dimensional Benney system is derived from the truncated Painlevé expansion. Such residual symmetry is localised and the original Benney equation is extended into an enlarged system by introducing four new variables. By using Lies first theorem, we obtain the finite transformation for the localised residual symmetry. More importantly, we further localise the linear superposition of multiple residual symmetries and construct the nth Bäcklund transformation for the Benney system in the form of the determinant. Moreover, it is proved that the (2+1)-dimensional Benney system is consistent tanh expansion (CTE) solvable. The exact interaction solutions between solitons and any other types of potential Burgers waves are also obtained, which include soliton-error function waves, soliton-periodic waves, and so on.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11447017), the Natural Science Foundation of Zhejiang Province (Grant No. LY14A010005), and the Scientific Research Foundation of the First-Class Discipline of Zhejiang Province (B) (No. 201601).

References

[1] P. A. Clarkson and M. D. Kruskal, J. Math. Phys. 30, 2201 (1989).10.1063/1.528613Search in Google Scholar

[2] P. A. Clarkson and E. L. Mansfield, SIAM J. Appl. Math. 54, 1693 (1994).10.1137/S0036139993251846Search in Google Scholar

[3] G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations, Springer-Verlag Press, Berlin 1974.10.1007/978-1-4612-6394-4Search in Google Scholar

[4] G. W. Bluman and S. Kumei, Symmetries and Differential Equation, Springer-Verlag Press, Berlin 1989.10.1007/978-1-4757-4307-4Search in Google Scholar

[5] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag Press, New York 1993.10.1007/978-1-4612-4350-2Search in Google Scholar

[6] S. Lie, Arch. Math. 6, 328 (1981).Search in Google Scholar

[7] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York 1982.10.1016/B978-0-12-531680-4.50012-5Search in Google Scholar

[8] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag Press, Berlin 1986.10.1007/978-1-4684-0274-2Search in Google Scholar

[9] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Boston Press, Reidel 1985.10.1007/978-94-009-5243-0Search in Google Scholar

[10] Z. Z. Dong, F. Huang, and Y. Chen, Z. Naturforsch 66, 75 (2011).10.1515/zna-2011-1-212Search in Google Scholar

[11] G. W. Bluman and J. D. Cole, J. Math. Mech. 18, 1025 (1969).Search in Google Scholar

[12] F. Galas, J. Phys. A: Math. Gen. 25, L981 (1992).10.1088/0305-4470/25/15/014Search in Google Scholar

[13] S. Y. Lou, J. Phys. A: Math. Phys. 30, 4803 (1997).10.1088/0305-4470/30/13/028Search in Google Scholar

[14] S. Y. Lou and X. B. Hu, J. Phys. A: Math. Gen. 30, L95 (1997).10.1088/0305-4470/30/5/004Search in Google Scholar

[15] Z. Y. Ma, J. X. Fei, and Y. M. Chen, Appl. Math. Lett. 37, 54 (2014).10.1016/j.aml.2014.05.013Search in Google Scholar

[16] X. N. Gao, S. Y. Lou, and X. Y. Tang, J. High Energy Phys. 5, 029 (2013).Search in Google Scholar

[17] S. Y. Lou, X. R. Hu, and Y. Chen, J. Phys. A 45, 155209 (2012).10.1088/1751-8113/45/15/155209Search in Google Scholar

[18] S. Y. Lou, arXiv: 1308.1140 (2013).10.1038/scibx.2014.1140Search in Google Scholar

[19] Y. Jin, M. Jia, and S. Y. Lou, Commun. Theor. Phys. 58, 795 (2012).10.1088/0253-6102/58/6/02Search in Google Scholar

[20] X. Z. Liu, J. Yu, B. Ren, and J. R. Yang, Chin. Phys. B 24, 010203 (2015).10.1088/1674-1056/24/1/010203Search in Google Scholar

[21] X. Z. Liu, J. Yu, and B. Ren, Chin. Phys. B 24, 30202 (2015).10.1088/1674-1056/24/3/030202Search in Google Scholar

[22] X. P. Xin, Q. Miao, and Y. Chen, Chin. Phys. B 23, 010203 (2014).10.1088/1674-1056/23/1/010203Search in Google Scholar

[23] Q. Miao, X. P. Xin, and Y. Chen, Appl. Math. Lett. 28, 7 (2014).10.1016/j.aml.2013.09.002Search in Google Scholar

[24] X. P. Xin, J. C. Chen, and Y. Chen, Chin. Ann. Math. 3B, 1 (2014).Search in Google Scholar

[25] G. W. Bluman, A. F. Cheviakov, and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer Press, New York 2010.10.1007/978-0-387-68028-6Search in Google Scholar

[26] B. Ren, Z. M. Lou, Z. F. Liang, and X. Y. Tang, Eur. Phys. J. Plus 131, 441 (2016).10.1140/epjp/i2016-16441-7Search in Google Scholar

[27] S. Y. Lou and X. B. Hu, Chin. Phys. Lett. 10, 577 (1993).10.1088/0256-307X/10/10/001Search in Google Scholar

[28] D. J. Benney, Stud. Appl. Math. L11, 45 (1973).10.1002/sapm197352145Search in Google Scholar

[29] N. H. Ibragimov, V. F. Kovalev, and V. V. Pustovalov, Nonlinear Dynam. 28, 135 (2002).10.1023/A:1015061100660Search in Google Scholar

[30] D. S. Wang and Y. B. Yin, Comput. Math. Appl. 71, 748 (2016).10.1016/j.camwa.2015.12.035Search in Google Scholar

[31] V. E. Zakharov, Singular Limits of Dispersive Waves, Plenum Press, New York 1994.Search in Google Scholar

[32] F. Guil, M. Manas, and L. M. Alonso, J. Phys. A: Math. Gen. 36, 4047 (2003).10.1088/0305-4470/36/14/309Search in Google Scholar

Received: 2017-6-3
Accepted: 2017-7-11
Published Online: 2017-8-7
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.5.2023 from https://www.degruyter.com/document/doi/10.1515/zna-2017-0191/html
Scroll to top button