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Abstract: The problem of conjugate free convection from a 
vertical fin embedded in a fluid-saturated porous medium 
is investigated. The governing nonlinear equations are 
solved iteratively by a highly implicit finite difference 
scheme. In this paper, the results based on four models, 
viz the Darcy model, the Brinkman model, the non-Dar-
cian model with nonlinear inertia and viscous terms, and 
also the non-Darcian model with viscous, nonlinear iner-
tia and velocity square terms, are compared. It is seen that 
fin cooling is more effective at higher Grashof or Darcy 
numbers due to stronger convection effects. The local 
Nusselt number is observed to increase with the Grashof 
or Darcy numbers and decrease slightly with the conduc-
tion–convection parameter. The limitation of the Darcy’s 
law is observed at higher values of permeability when the 
non-Darcian models are more relevant.

Keywords: Conjugate Free Convection; Highly Implicit 
Finite Difference Scheme; Non-Darcian Model; Rectangu-
lar Fin.

1  �Introduction
The problem of conjugate heat transfer from a down-
ward projecting fin immersed in a fluid-saturated porous 
medium has many important applications such as extrac-
tion of geothermal energy and design of insulating system 
for energy conservation. In conventional heat transfer 

analysis of fins, it is generally assumed that the convec-
tive heat transfer coefficient at the fin surface is uniform 
all along the fin. The fin heat conduction equation is then 
solved analytically using a uniform value of the heat trans-
fer coefficient. However, the local fin heat transfer coeffi-
cient can experience a substantial variation along the fin 
surface due to non-uniformities in both the velocity and 
the temperature fields in the fluid. It is necessary, there-
fore, to solve the conductive–convective heat transfer as a 
coupled problem and thereby simultaneously solve for the 
temperature distributions in the fluid and the fin.

The study of conjugate heat transfer for free convec-
tive flow was initiated by Lock and Gunn [1], who have 
studied boundary layer flow and heat transfer along a thin 
vertical fin. Bejan and Anderson [2] have examined heat 
transfer across a vertical partition in a porous medium. 
They presented an analytical solution for the boundary 
layer flow and the temperature field around the parti-
tion. The conjugate heat transfer from a fin embedded 
in a porous medium has been investigated by Pop et al. 
[3] with a high Rayleigh number around a vertical fin. 
In another paper, Pop et al. [4] analysed the mixed con-
vection heat transfer along a vertical fin using similarity 
variables to transform the boundary layer equations and 
solved the resulting equation by using the finite difference 
method. The problem of conjugate free convection due to a 
vertical plate in a porous medium is studied by Vynnycky 
and Shigeo [5] and Kimura et al. [6]. A transient problem 
of the same nature is studied by Cheng and Pop [7] and 
Vynnycky and Kimura [8]. Petroudi et  al. [9] applied a 
semi-analytical method for solving a nonlinear equation 
arising from natural convection around a porous fin by 
homotopy perturbation method to obtain an approximate 
solution. Sobamowo et  al. [10] considered the thermal 
performance analysis of a natural convection porous fin 
with temperature-dependent thermal conductivity and 
internal heat generation. Conjugate mixed convection 
heat transfer analysis of a plate fin embedded in a porous 
medium was performed by Liu et al. [11]. Chen and Chiou 
[12] have analysed conjugate free convection heat trans-
fer from a vertical fin embedded in non-Darcian porous 
media. It is worth noting that all the above investigations 
treat the porous medium as purely Darcian, and boundary 
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and inertia effects have been totally neglected except in 
Chen and Chiou [12].

The purpose of the present work was to study the 
conjugate heat transfer problem along a fin embedded in a 
fluid-saturated non-Darcian porous medium. The results 
are based on the inclusion of boundary and inertia effects 
as well as a nonlinear effect that is invoked to describe the 
flow. The effects of inertia and viscous forces are taken 
into account in the momentum equation. These forces 
are not accounted for in Darcy’s law that has been used 
as the momentum equation by the other researchers. Four 
models, namely, Darcy model, Brinkman model, non-
Darcian model with nonlinear inertia and viscous terms, 
and also non-Darcian model with viscous, nonlinear 
inertia and velocity square terms, are considered in the 
present study. The selection of four individual models 
described above has been made in order to appreciate the 
inclusion of viscous, nonlinear inertia and velocity square 
terms in the momentum equation. The results obtained 
using the four models are compared, and the importance 
of viscous and inertia forces has been perceived especially 
in a highly porous medium. The governing equations 
are solved iteratively within the framework of boundary 
layer approximations by a highly implicit finite difference 
scheme described by Hornbeck [13]. A variable mesh size 
was used in order to obtain accurate flow and heat transfer 
characteristics inside the boundary layer.

2  �Mathematical Formulations
A slender rectangular fin of thickness 2b and length L, as 
shown in Figure 1, is considered. The fin is placed verti-
cally in a fluid-saturated porous medium, and the base 
temperature Tb of the fin is taken as prescribed. Heat con-
duction along the fin is one-dimensional since 2b  L. The 
fin with a variable wall temperature Tw is in contact with 
the fluid-saturated porous medium. The temperature T∞ in 
the porous medium far away from the fin is considered to 
be constant. A laminar boundary layer flow is assumed to 
exist around the fin, and the temperature changes from 
T = Tw to T = T∞ within the boundary layer. The direction of 
the vertical fin is considered as the X direction, and the Y 
direction is perpendicular to the fin.

The boundary layer is considered to be very thin com-
pared to the length of the fin, and certain approximations 
in the equations of motion are possible. The fluid is incom-
pressible, and the density is assumed to be constant except 
in the buoyancy force term according to the Boussinesq 
approximation. The momentum equation is described by 

the generalised Darcy’s law as proposed by Yamamoto and 
Iwamura [14] and also by Vafai and Tien [15]. Considering 
the order of magnitude of the various terms and neglecting 
the term of equal order of smallness [16] under the frame-
work of boundary layer approximation, the governing 
equations for the fluid and the fin are given by
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While the last term, that is, the velocity square term 
in (2) is considered in the non-Darcian model considered 
by Vafai and Tien [15], the term vanishes in the model pro-
posed by Yamamoto and Iwamura [14].

The boundary conditions are,
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Figure 1: Geometry of the problem.



V. Kumar et al.: Conjugate Free Convection      37

where U and V are the vertical and horizontal velocity com-
ponents, T is the fluid temperature, and T∞, Tw and Tb are 
the temperatures of the ambient fluid, fin surface, and fin 
base, respectively. Also, g is the acceleration due to gravity, 
β is the coefficient of volume expansion, μ is the kinematic 
viscosity, CF is the inertia coefficient, α is the thermal dif-
fusivity, kf and ks are the thermal conductivities of the fluid 
and the fin, and K is the permeability of the porous medium.

Since the fluid is in contact with the fin at Y = 0, the veloc-
ity components are taken as zero because of the no-slip con-
dition and the fluid temperature is equal to the temperature 
of the fin surface. With the temperature boundary condition 
for the fluid at Y = 0, the wall temperature Tw is unknown 
and needs to be solved through the heat conduction equa-
tion for the fin. The vertical velocity component U and the 
fluid temperature outside the boundary layer (Y→ ∞) are 
equal to the free stream velocity and temperature, respec-
tively. The boundary condition for the horizontal velocity 
component V at Y→ ∞  is not required, as the second-order 
derivative of V with respect to Y does not occur anywhere 
in the equation. The vertical velocity component U and the 
fluid temperature at bottom of the fin (X = 0) are equal to the 
free stream velocity and temperature, respectively. The fin 
base temperature Tb at X = L is prescribed.

Introducing the following dimensionless quantities,
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the governing (1)–(4) take the following dimensionless 
form:
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where Gr is the Grashof number, Pr is the Prandtl number, 
CF is the inertia coefficient, Da is the Darcy number, and 
CCP is the conduction–convection parameter.

Equations (7)–(10) are to be solved with the following 
dimension boundary conditions:
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The boundary condition for θw at x = 0 is based on the 
following argument. If the fin is very long and thin, the 
amount of heat that passes from the tip of the fin to the 
fluid is negligible as compared to the heat loss through 
the lateral surface. In such a case, the assumption of an 
adiabatic tip is justified and the temperature gradient in 
the fin at the tip is thus assumed to be zero.

It may also be observed that in the foregoing descrip-
tion of the boundary conditions, no mention is made of 
the velocity at the base surface. This omission is required 
by the boundary layer equations. Once the conditions 
have been specified at the leading edge of the plate 
(x = 0), the solution yields the velocity field at all small 
values of x > 0 and, therefore, does not permit specifica-
tion of the velocity boundary condition at any value of 
x > 0. The non-accounting of the hydrodynamic effects 
related to the presence of the base surface should not 
materially affect the fin heat transfer results provided the 
fin length L is large compared with the boundary layer 
thickness at x = L [17].

3  �Method of Solution
The finite difference form of (7)–(10) was solved numerically by 
superposing a two-dimensional rectangular mesh on the flow field. 
A highly implicit numerical scheme [13] was used for the difference 
representation of the momentum and energy equations in which 
not only all y derivatives were evaluated at the unknown level but 
also the coefficient of nonlinear convective terms was taken at the 
unknown level. This form is necessitated by the zero velocity of 
the free stream, which will result in the classical implicit formula-
tion being inconsistent. The continuity equation has been written 
in explicit form. Since the difference form is nonlinear, an iterative 
scheme was applied to solve the system of difference equations one 
by one in a sequential manner. The process involves an overall itera-
tion loop between the fluid and the fin equation and a sub-iteration 
loop for the fluid-phase equations. The basic steps of the procedure 
are summarised below:
(a)	 An initial guess for the fin temperature θw(x) is estimated. A 

parabolic variation, say θw(x) = x2, was found to be a good initial 
guess.

(b)	 The flow field and convective heat transfer equations in the fluid 
are solved with the guessed fin temperature distribution as the 
wall boundary condition.
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(c)	 From the calculated fluid temperature field, the heat flux 

wy
θ ∂

  ∂ 
 is estimated at every x position.

(d)	 The fin heat conduction equation is solved by prescribing the 

value of 
wy

θ ∂
  ∂ 

 as obtained above, which gives a new distribu-

tion of the fin temperature.
(e)	 With a new guess for the temperature distribution evaluated 

from their current values, steps (b)–(d) are repeated until con-
vergence is obtained. Finally, all the relevant heat transfer char-
acteristics are calculated.

It may not be out of place to mention that the highly implicit numeri-
cal scheme was used to solve the set of nonlinear steady-state (8) and 
(9) as it was found to be consistent. Hornbeck [13] has used such a 
method to solve similar mathematical equations.

The computer program takes care of the fact that the velocity 
and temperature profiles vary rapidly near the fin, and hence, a fine 
mesh is required near the fin. A relatively coarse mesh has been used 
in the regions of slower variation.

4  �Results and Discussion
To establish the correctness of the present work, the 
results obtained by the finite difference method are com-
pared with analytical solutions for a limiting case corre-
sponding to a free fluid (Da→ ∞) flow at a low Grashof 
number. In this case, the energy equation reduces to
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The general solution of the above equation, which 
satisfies the given boundary condition, is
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CCP = 0, there is no heat loss from the fin and the entire fin 
is assumed to be at constant temperature equal to the base 
temperature. So, one can set θw(x) = 1 for CCP = 0.

Neglecting the inertial and Darcy resistance terms, the 
equation of motion can be written in a simplified form as,
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The solution of (14) with the given velocity boundary 
condition is,
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The results corresponding to the above-described lim-
iting case, obtained by the finite difference method, are 
compared with the exact analytical values in Table 1.

The good agreement between the numerical and exact 
analytical solutions indicates the correctness of the results 
obtained by the finite difference method.

After validation of the numerical scheme followed in 
the present study, numerical results have been obtained 
by using the following four models:
I.	 Darcy’s model
II.	 Brinkman model
III.	 Non-Darcian model with nonlinear inertia and vis-

cous terms
IV.	 Non Darcian model with viscous, nonlinear inertia 

and velocity square terms.

The wall temperature variation with x is plotted for various 
values of Gr in Figure 2. The analytical result obtained for 
small values of Gr is shown by a broken line. It is found 
that as Gr decreases, the temperature profile approaches 

Table 1: Temperature and velocity distribution for Da→ ∞(103), 
CCP = 0, Gr = 1.0 and ymax = 0.81.

y Temperature Horizontal velocity

Numerical
results

Analytical 
results

Numerical 
results

Analytical 
results

0.0 1.0000 1.0000 0.0000 0.0000
0.1 0.8780 0.8765 0.0225 0.0222
0.2 0.7560 0.7531 0.0363 0.0356
0.3 0.6340 0.6296 0.0425 0.0416
0.4 0.5120 0.5062 0.0423 0.0412
0.5 0.3901 0.3827 0.0371 0.0357
0.6 0.2681 0.2593 0.0279 0.0264
0.7 0.1462 0.1358 0.0160 0.0146
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Figure 2: Effect of Gr on wall temperature.
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the hyperbolic variation as suggested by the analytical 
solution (CCP ≠ 0 and low Gr). As Gr increases, more heat 
is removed from the fin by fluid convection as indicated by 
the slope of the wall temperature.

The wall temperature variation for various values of 
the Darcy number is shown in Figure 3. It is seen that as 
the Darcy number approaches zero, the wall temperature 
distribution moves closer to the analytical solution for 
pure conduction in the fluid. This is to be expected since 
for small values of Da, the Darcy resistance to flow is very 
large, reducing the velocity of the fluid. The heat convec-
tion effect, therefore, becomes very small even at large 
values of Gr as Da approaches zero. Thus, for increasing 
Da, the fin is cooled more.

In Figure 4, the effect of the conduction–convection 
parameter CCP upon the wall temperature distribution is 
depicted. For each value of CCP, the numerical solution 
and the corresponding pure conduction solution have 
been plotted. The trend is acceptable since higher CCP 
leads to more coupling between the solid and the fluid 

phases and, hence, more heat loss from the fin. Both 
the analytical and numerical solutions exhibit a similar 
variation with CCP, although a close match between the 
numerical and its corresponding analytical solution is not 
to be expected on account of the high Gr value used for the 
numerical solutions.

In Figure 5, the fluid temperature variation in the 
x direction is shown for various values of the Grashof 
number at a fixed value of y. As the Grashof number 
increases, the temperature of the fluid decreases. This 
trend is similar to that of the fin temperature. Although 
the total amount of heat removed from the fin is larger at 
a higher Grashof number, the increase in the heat trans-
fer coefficient is more rapid, resulting in a smaller fluid 
temperature.

Figures 6 and 7 show the variation of the tempera-
ture and the velocity fields in the y direction at various x 
locations. As expected, for fixed values of the other para-
meters, the velocity and temperature values increase with 
x. The increase in the velocity values with x indicates that 
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natural convection becomes more and more vigorous as 
fluid flow advances to the fin base in the x direction. This 
is a direct consequence of increased heat penetration into 
the fluid at higher values of x.

In Figures 8–10, the local Nusselt number varia-
tion with the governing parameters Gr, Da, and CCP are 
shown. The Nusselt number increases with Gr and Da and 
it decreases slightly with CCP. Since the heat loss from the 
fin is related to the slope of the wall temperature varia-
tion in the x direction and the Nusslet number character-
ises heat loss from the fin, the observed variation of the 
Nusslet number with various parameters can be explained 
by considering the slope of θw in Figures 2–4.

In Figure 11, the wall temperature profile predicted 
by the present analysis is compared with that of Pop 
et  al. [4], who have considered Darcy’s model for flow. 
The result of Pop et al. [4] is shown by a broken line. For 
a smaller Grashof number, the difference is not signifi-
cant. However, as expected, the non-Darcy effects play an 
important role at higher Grashof numbers.

In Figure 12a–c, the wall temperature has been shown 
as a function of x. Results based on the four models I, II, 
III, and IV are presented below.
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It is seen that the wall temperature values obtained 
by using all the four models are very close at Da = 10−4, 
and variation in results is observed at higher values of the 
Darcy number (Da). A similar trend is observed in the local 
Nusselt number also with increasing values of the Darcy 
number as depicted in Figure 13a–c.

This trend is attributed to the limitations of the Darcy’s 
model at higher value of permeability when inertia forces 
cannot be neglected. It is imperative, therefore, to apply 
non-Darcian models at greater permeability like the highly 
fractured reservoirs.
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ferent models for Da = 10−3. (c) Wall temperature comparison using 
four different models for Da = 10−4.
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Figure 13: (a) Comparison of local Nusselt number using 
four different models for Da = 10−2. (b) Comparison of local 
Nusselt number using four different models for Da = 10−3. 
(c) Comparison of local Nusselt number using four different 
models for Da = 10−3.
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5  �Conclusion
The conductive–convective heat transfer from a fin 
embedded in a porous medium has been modelled as a 
coupled problem, and the temperature distributions in the 
fluid and the fin have been solved simultaneously. Inertia 
and viscous forces are accounted for by using generalised 
non-Darcian models to obtain better results, particularly 
in the case of a highly permeable porous medium adjacent 
to an impermeable surface. The problem is governed by 
some dimensionless parameters, viz the Grashof number, 
the Darcy number, the conduction–convection parameter, 
and the inertia coefficient. Numerical solutions of the 
problem are obtained by a highly implicit finite difference 
method. A non-uniform grid is adopted in order to obtain 
accurate flow and heat transfer characteristics inside the 
boundary layer. The fin cooling is observed to be more 
effective at a higher Grashof or Darcy number due to 
stronger convection effects. It is observed that the local 
Nusselt number increases with the Grashof and Darcy 
numbers and decreases slightly with the conduction–
convection parameter as more heat is removed from the 
fin at higher Grashof and Darcy numbers, but higher CCP 
leads to greater coupling between the solid and fluid 
phases. It has been found that the application of the non-
Darcian models is essential in the case of a highly porous 
medium.
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