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Abstract: The aim of this article is to study the unsteady 
flow of immiscible couple stress fluid sandwiched between 
Newtonian fluids through a horizontal channel. The flu-
ids and plates are initially at rest. At an instant of time, a 
constant pressure gradient is applied along the horizontal 
direction to generate the flow. The time-dependent par-
tial differential equations are solved numerically using 
the finite difference method. The continuity of velocities 
and shear stresses at the fluid-fluid interfaces has been 
considered. The obtained results are displayed through 
graphs and are discussed for various fluid parameters 
pertaining the flow. The volume flow rate is also obtained 
numerically for diverse fluid parameters and is presented 
through a table. It is noticed that fluid velocities increased 
with time and reached a steady state after a certain time 
level. Also, the presence of couple stresses reduced the 
fluid velocities. Volume flow rate increased with Reynolds 
number and is reduced by increase of ratio of viscosities.

Keywords: Couple Stress Fluid; Horizontal Channel; 
Immiscible Fluid; Unsteady Flow.

PACS: 47.60.Dx.

1  �Introduction
The couple stress fluid theory initiated by Stokes [1] rep-
resents a simple generalisation of the classical Newtonian 
fluid theory that sustains couple stresses and the body 
couples. In the Newtonian fluid theory, the mechani-
cal interaction of one part of the body on another, across 
a surface, is assumed to be equivalent to a force distri-
bution only. However, in the couple stress fluid theory, 
the mechanical interaction is assumed to be equivalent 

to both force and moment distribution. The concept of 
couple stresses results from the study of mechanical inter-
actions taking place across a surface and, conceptually, 
is not related to the kinematics of motion [2]. The striking 
feature of this fluid model is that, unlike the Newtonian 
fluid model, the stress tensor is not symmetric. The fluids 
consisting of rigid, randomly oriented particles suspended 
in a viscous medium, such as blood, lubricants contain-
ing a small amount of polymer additive, colloidal suspen-
sions, liquid crystals and synthetic fluids, can be modelled 
using the couple stress fluid theory [3, 4]. In view of its 
simplicity and numerous applications, diverse research-
ers across the globe worked on couple stress fluid flows 
for different situations. Stokes [2] himself, in his book, has 
documented an extensive literature on the flows of couple 
stress fluids. Chaturani [5] investigated the Poiseuille flow 
of a couple stress fluid with applications to blood flow. 
Devakar and Iyengar [6] discussed the run-up flow of a 
couple stress fluid between parallel plates. Maiti and Misra 
[7] have made an investigation on peristaltic transport of 
couple stress fluid with some applications to hemody-
namics. Hayat et al. [8] studied heat transfer in a couple 
stress fluid over a continuous moving surface with inter-
nal heat generation and convective boundary conditions. 
Devakar et al. [9] obtained analytical solutions of couple 
stress fluid flows with slip boundary conditions. Abbas 
et al. [10] discussed the hydromagnetic mixed convective 
two-phase flow of couple stress and viscous fluids in an 
inclined channel. Recently, Asad et al. [11] discussed the 
flow of couple stress fluid with variable thermal conduc-
tivity. Naduvinamani et al. [12, 13], Lin and Hung [14] and 
Lin et al. [15] have made extensive studies on the theory of 
hydrodynamic lubrication of journal bearings based on the 
couple stress fluid model. In their work, it is found that the 
couple stress fluid possesses better load-carrying capacity 
than that of the classical Newtonian fluid.

The research on the flow of non-Newtonian fluid sand-
wiched between Newtonian fluids is reasonably underex-
plored despite its applicability in blood flows, chemical 
engineering, crude oil extraction, etc. The blood, when 
flowing through small arteries, behaves as a two-fluid 
model with the suspension of all erythrocytes (non-New-
tonian) in the core region and plasma (Newtonian) in the 
peripheral region [16–18]. This may be visualised in Car-
tesian form as the sandwiched flow of core fluid between 
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two peripheral fluids. Aside from blood flows, there are 
many instances in chemical industries and geology where 
the modelling of the flow may be desirable using the sand-
wiched fluid flow model. Owing to these applications, few 
attempts have been made in order to study the flow of 
immiscible non-Newtonian fluids sandwiched between 
two Newtonian fluids. It is worth mentioning here that 
Umavathi and her team have made a remarkable contri-
bution in the advancement of sandwiched fluid flows. 
Since 2005, the flow and heat transfer of a couple stress 
fluid sandwiched between viscous fluid layers have been 
studied in steady flow situations by Umavathi et al. [19], 
obtaining closed form solutions. The flow and heat trans-
fer of micropolar fluid sandwiched between viscous fluid 
layers was discussed analytically by Umavathi et al. [20]. 
The flow and heat transfer of couple stress permeable 
fluid sandwiched between viscous fluid layers was ana-
lysed by Umavathi [21].

The studies regarding sandwiched flow situations 
quoted above were carried out imposing the simplifying 
constraint of steadiness. However, there exist situations 
in natural as well as artificial flows, in which it is highly 
desirable to consider the time evolution aspect. The study 
of time-dependent flows of sandwiched fluids is more real-
istic for understanding the aforementioned applications 
in biomechanics, chemical engineering and hydrology. 
In light of this, Umavathi et al. [22] studied unsteady flow 
and heat transfer of porous media sandwiched between 
viscous fluids, which is the only attempt to study unsteady 
sandwiched fluid flow.

In the present investigation, an unsteady flow of 
immiscible couple stress fluid sandwiched between New-
tonian fluids through a horizontal channel is considered. 
The research area of sandwiched fluid flows is reasonably 
underexplored relative to their physical relevance quoted 
above (in para 2). Further, the unsteadiness (time depend-
ency) factor in sandwiched fluid flows makes the problem 
even more realistic and interesting, which motivated us 
to consider this problem. To summarise, the practicality 
and the complexities involved due to the unsteadiness 
and sandwiched nature of non-Newtonian fluids between 
Newtonian fluids make the work presented in this paper 
novel. The solutions of the time-dependent partial differ-
ential equations governing the flow are obtained making 
use of Crank-Nicolson’s [23] finite difference approach. 
The no-slip boundary conditions are applied at the bound-
aries of the upper and lower plates. In addition, continuity 
of fluid velocities and shear stresses is assumed at fluid-
fluid interfaces.

The paper is organised into five sections. The next 
section presents the equations associated with the couple 

stress fluid model followed by mathematical formulation 
of the problem under consideration, in Cartesian coor-
dinates that govern the flow of immiscible couple stress 
fluid sandwiched between Newtonian fluids. The initial, 
boundary and interface conditions are also presented in 
this section. The finite difference scheme, which gives 
numerical solutions of the immiscible fluid flow problem 
considered, is presented in Section 3. Section 4 is dedi-
cated for the discussion of the results, while the conclu-
sions of the current investigation are presented in the last 
section.

2  �Governing Equations and 
Mathematical Formulation

The equations governing the flow of an incompressible 
couple stress fluid, in the absence of body couples, are 
given by [1]

	 0,q∇⋅ = � (1)

	
2 4 ,q q q F p q q

t
ρ ρ µ η

 ∂ + ⋅∇ = − ∇ + ∇ − ∇  ∂ � (2)

where q̅ is the velocity vector, ρ is the density, F̅ is the body 
force per unit mass, μ is the viscosity coefficient and η is 
the couple stresses viscosity coefficient.

The momentum equation (2) associated to the couple 
stress fluid model is of higher order than that of the classi-
cal Navier-Stokes equations of the Newtonian fluid model. 
It can be observed that, in absence of couple stresses (i.e. 
when η = 0), the momentum equation (2) reduces to

	
2 .q q q F p q

t
 ∂ + ⋅∇ = − ∇ + ∇  ∂ � (3)

Equation (3) is the Navier-Stokes equation of motion 
for the classical Newtonian fluid model. In view of this, 
the couple stress fluid model is considered as a simple 
generalisation of the Newtonian fluid model accounting 
the couples stresses and body couples in the fluid medium 
for describing the flow of complex fluids such as animal 
blood, lubricating oils, liquid crystals, etc.

Consider the unidirectional flow of an immiscible 
couple stress fluid sandwiched between Newtonian fluids 
through a horizontal channel. The channel consists of two 
horizontal parallel plates extending in the X and Z direc-
tions, whereas, the Y direction is taken normal to it. The 
lower and upper plates are situated at y = − h1 and y = 2h1, 
respectively (see Fig. 1).
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As the fluids are immiscible, there are three fluid 
regions: region I (−h1 ≤ y ≤ 0) consists of Newtonian fluid 
of density ρ1 and viscosity μ1, region II (0 ≤ y ≤ h1) is filled 
with couple stress fluid of density ρ2 and viscosity μ2 
and couple stress viscosity coefficient η and region III 
(h1 ≤ y ≤ 2h1) is filled with the same Newtonian fluid as that 
of region I. The fluids are assumed to be incompressible, 
and all the properties of fluids are constant. Under these 
assumptions, the fluid flow in region II is governed by the 
differential equations (1) and (2), while the fluid flow in 
regions I and III is governed by differential equations (1) 
and (3).

Initially, both plates and the fluids in all the three 
regions are at rest. At time t > 0, a constant pressure gra-
dient is applied in the X direction to generate the flow. 
Therefore, the velocities in all the fluid regions are taken 
in the form q̅I = (uI(y, t), 0, 0), where I = 1, 2, 3. These veloc-
ity fields satisfy the incompressibility conditions of the 
respective flow regions. The momentum equations for the 
fluid flow, in the absence of body forces and body couples, 
in all the regions take the form:
Region I (−h1 ≤ y ≤ 0) Newtonian fluid region

	

2
1 1

1 1 2
d ,
d

u up
t x y

ρ µ
∂ ∂

= − +
∂ ∂

� (4)

Region II (0 ≤ y ≤ h1) Couple stress fluid region

	

2 4
2 2 2

2 2 2 4
d ,
d

u u up
t x y y

ρ µ η
∂ ∂ ∂

= − + −
∂ ∂ ∂

� (5)

Region III (h1 ≤ y ≤ 2h1) Newtonian fluid region

	

2
3 3

1 1 2
d .
d

u up
t x y

ρ µ
∂ ∂

= − +
∂ ∂

� (6)

Because the system is at rest initially, fluids in all the 
regions have zero velocity for t ≤ 0. Since the plates are 

stationary in the present case, as a result of the no-slip 
boundary condition, the fluid velocities at both plates 
are zero. Because the fluids are immiscible, there are two 
fluid-fluid interfaces: one at y = 0 and the other at y = h1. 
It is assumed that fluid velocities and shear stresses 
are continuous at both fluid-fluid interfaces. It should 
be mentioned here that for the single-fluid flow of the 
couple stress fluid, in view of the higher-order nature of 
the momentum equation governing the flow, researchers 
have been using heuristic boundary conditions proposed 
by Stokes [2]. However, for the two-fluid flow under con-
sideration, couple stress fluid is sandwiched between 
Newtonian fluids; there are two fluid-fluid interfaces, 
each of which has couple stress and Newtonian fluid pair. 
Therefore, as the stress tensor of the couple stress fluid 
is not symmetric, continuity assumption of shear stress 
at each fluid-fluid interface gives two conditions. In view 
of this, there is no need to consider heuristic boundary 
conditions.

In mathematical form, these initial, boundary and 
interface conditions turn out to be:
Initial conditions: for t ≤ 0

	

1 1

2 1

3 1 1

( , 0) = 0, 0,
( , 0) = 0, 0 ,
( , 0) = 0, 2 .

u y h y
u y y h
u y h y h

− ≤ ≤
≤ ≤
≤ ≤

� (7)

Boundary conditions: for t > 0

	

1 1

3 1

( , ) 0,
(2 , ) 0.

u h t
u h t

− =
= � (8)

Interface conditions: for t > 0
Continuity of velocities:

	
1 2

2 1 3 1

(0, ) (0, ),
( , ) ( , ).

u t u t
u h t u h t

=
=

�
(9)

y = 2h1

y = h1

y = 0

y = – h1
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Figure 1: Geometry of the problem.
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Continuity of shear stresses:
3

1 2 2
1 2 3

3
1 2 2

1 2 3

  and

  at  0,

u u u
y y y
u u u

y
y y y

µ µ η

µ µ η

∂ ∂ ∂
= −

∂ ∂ ∂
∂ ∂ ∂

= + =
∂ ∂ ∂

and
3

32 2
2 1 3

3
32 2

2 1 13

  and

  at  ,

uu u
y y y

uu u
y h

y y y

µ µ η

µ µ η

∂∂ ∂
= −

∂ ∂ ∂
∂∂ ∂

= + =
∂ ∂ ∂

which, after simplification, becomes

	

3
1 2 2

1 2 3  and  0,  at  0,
u u u

y
y y y

µ µ
∂ ∂ ∂

= = =
∂ ∂ ∂

� (10)

and

	

3
32 2

2 1 13  and  0  at  .
uu u

y h
y y y

µ µ
∂∂ ∂

= = =
∂ ∂ ∂

� (11)

Introducing nondimensional variables,

	

21
1 1 1, , , , ,I I

h t
x h x y h y u U u t p U p

U
ρ= = = = = � (12)

where I = 1, 2, 3,
into the initial boundary value problem (4)–(11), after 
dropping bars, we get the following:
Region I (−1 ≤ y ≤ 0) Newtonian fluid region

	

2
1 1

2
1 ,

Re
u u

G
t y

∂ ∂
= +

∂ ∂
� (13)

Region II (0 ≤ y ≤ 1) Couple stress fluid region

	

2 2 4
2 1 2 1 2

2 4
2 2 2

,
Re Re

u m u m a u G
t m m my y

∂ ∂ ⋅ ∂
= − +

∂ ⋅ ⋅∂ ∂
    � (14)

Region III (1 ≤ y ≤ 2) Newtonian fluid region

	

2
3 3

2
1 ,

Re
u u

G
t y

∂ ∂
= +

∂ ∂
� (15)

Initial conditions: for t ≤ 0

	

1

2

3

( , 0) 0,  1 0,
( , 0) 0,  0 1,
( , 0) 0,  1 2.

u y y
u y y
u y y

= − ≤ ≤
= ≤ ≤
= ≤ ≤

� (16)

Boundary conditions: for t > 0

	

1

3

( 1, ) 0,
(2, ) 0.

u t
u t

− =
= � (17)

Interface conditions: for t > 0
Continuity of velocities:

	

1 2

2 3

(0, ) (0, ),
(1, ) (1, ).

u t u t
u t u t

=
= � (18)

Continuity of shear stresses:

	

3
1 2 2

1 3  and  0,  at  0,
u u u

m y
y y y

∂ ∂ ∂
= = =

∂ ∂ ∂
� (19)

	

3
32 2

1 3  and  0,  at  1.
uu u

m y
y y y

∂∂ ∂
= = =

∂ ∂ ∂
� (20)

where 2
1 2

a
h

η

µ
=  is the couple stress parameter, 1 1

1

Re
Uhρ

µ
=  

is the Reynolds number, 
d
d
pG
x

= −  is the pressure gradient, 

2
1

1

m
µ

µ
=  is the ratio of viscosities and 2

2
1

m
ρ

ρ
=  is the ratio of 

densities.

3  �Numerical Solution
The analytical solutions for the current initial boundary 
value problem (13)–(20) are tedious to find because of 
the time-dependent nature, the underlying higher-order 
partial differential equations and the coupled interface 
conditions. Therefore, a finite difference method is opted 
to obtain numerical solutions. The domain [−1, 2] is uni-
formly discretised in space and time considering h and k 
to be the step sizes in space and time directions, respec-
tively. Following the Crank-Nicolson approach, suitable 
finite difference approximations for partial derivatives are 
imposed in all the three regions, as well as on the inter-
faces. After discretisation, in spatial domain, the lower 
interface is observed at i = n and the upper interface is at 
i = 2n. The discretised form of the above system (13)–(20) 
is found to be
Region I: (i = 1, 2, …, n − 1) Newtonian fluid region

	

1 1, 1 1 , 1 1 1, 1

1 1, 1 , 1 1,

(2 1)
(1 2 ) ,

i j i j i j

i j i j i j

u u u
u u u Gk

λ λ λ

λ λ λ
− + + + +

− +

− + + −
= + − + +

� (21)
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Region II: (i = n + 1, n + 2, …, 2n − 1) Couple stress fluid 
region
for i = n + 1

	

2 1, 1 2 , 1 2 1, 1

2 2, 1 2 1, 2 ,

2 1, 2 2,

( )
( )

,

i j i j i j

i j i j i j

i j i j

Ru Q O u Pu
Bu Ru Q O u
Pu Bu S

− + + + +

+ + −

+ +

+ + +
+ = − − +
− − +

� (22)

for i = n + 2, …, 2n − 1

	

2 2, 1 2 1, 1 2 , 1

2 1, 1 2 2, 1 2 2,

2 1, 2 , 2 1,

2 2,
2

( 2)

( 2)
2 ,

i j i j i j

i j i j i j

i j i j i j

i j

Bu Tu X u
Tu Bu Bu
Tu X u Tu

GkBu
m

− + − + +

+ + + + −

− +

+

+ + +
+ + = −
− − + −

− +

� (23)

Region III: (i = 2n + 1, 2n + 2, …, 3n − 1) Newtonian fluid 
region

	

3 1, 1 3 , 1 3 1, 1

3 1, 3 , 3 1,

(2 1)
(1 2 ) .

i j i j i j

i j i j i j

u u u
u u u Gk

λ λ λ

λ λ λ
− + + + +

− +

− + + −
= + − + +

� (24)

Discretisation of interface conditions:
for i = n

	 1 1, 1 1 1 , 1 1 2 1, 1(1 ) 0,i j i j i ju m u m u− + + + +− + + = � (25)

for i = 2n

	 1 2 1, 1 1 1 , 1 3 1, 1(1 ) 0,i j i j i jm u m u u− + + + +− + + − = � (26)

where 2 ,
2Re

k
h

λ =
⋅

 1

2

,
Re

m
m

α =
⋅

 2 ,kA
h
α=  

2

4 ,k aB
h
α=   

2 22 6 6 ,
2

A B AB BR
A B

− + − −=
+  

2 22 9 6 ,
2

A AB BQ
A B

+ +=
+  

2 4 ,
2

A BO
A B

+=
+

 
2 26 6 ,

2
A AB BP

A B
− − −=

+  
2

2 (1 ) ,Gk BS
m

−=  

T = (− A − 4B), X = (2A + 6B).

The above system of difference equations (21)–(26), 
when written in matrix form, takes the form

	
( 1) ( ) , 0, 1, 2, j jWU MU N j+ = + = …� (27)

where W and M are banded sparse matrices of the order 
3n − 1, and N is the column vector of the order 3n − 1 with 

3
ln =  and 

3 .l
h

=  It is to be mentioned here that l represents 

the total number of spatial mesh points of [−1, 2]. As the 
spatial domain [−1, 2] has three uniform parts [−1, 0], [0, 1] 
and [1, 2] concerning three fluid regions, n represents the 
number of spatial mesh points in each fluid region.

U(j) is the solution vector at the jth time level, consist-
ing of velocities in all the fluid regions. The expressions 
for M, N and W are presented in the Appendix A.

The solutions for velocities in each region of flow, as 
well as at interfaces, can be obtained for every time level 
by solving the above system (27) for each j.

3.1  �Volume Flow Rate

The volume flow rate across the channel in nondimen-
sional form is given by

	

2 0 1

1 21 1 0
2

31

( , )d ( , )d ( , )d

( , )d

Q u y t y u y t y u y t y

u y t y

∗

− −
= = +

+

∫ ∫ ∫
∫

� (28)

As the solutions for fluid velocities are determined 
numerically, the integration (28) is carried out numeri-
cally to obtain the volume flow rate for diverse fluid para-
meters pertaining to the flow.

4  �Discussion of Results
The influence of various fluid parameters such as couple 
stress parameter, Reynolds number, pressure gradient, 
ratio of viscosities and ratio of densities on velocity is 
plotted through Figures 3–8. For plotting the variations, 
the following set of values are taken: a = 0.5, Re = 2, G = 10, 
m1 = 0.5, m2 = 0.5, t = 0.5, h = 0.005 and k = 0.01. The choice 
of step size h = 0.005 leads to a linear system of the order 
601 × 601 at each time level, which is solved using the 
Gaussian elimination method.

For the purpose of validation of the present numerical 
solutions, the acquired numerical results for fluid velocities 
in the steady-state case and in the absence of couple stresses 
(a = 0) are compared with the exact solutions (Appendix B) 
of Poiseuille flow of Newtonian fluid through a horizontal 
channel. It is evident from Figure 2 that the present solution 
is in good agreement with the exact solution.

Figure 3 displays the variation of the velocities with 
respect to time. It is observed that velocities in all the 
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Figure 2: Comparison of the present results with the exact solution.
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fluid regions are increasing as time is progressing. After 
a particular higher value of time, the variation between 
two consecutive profiles is much less. This means that 
velocities are reaching a steady state at a higher time level. 
Figure 4 represents the velocity profile for different values 
of couple stress parameter a. With the increase of couple 
stress parameter a, there is a decrease in fluid velocity of 
region II, while the velocities in region I and region III 
are almost unchanged. As the couple stresses are present 
only for the couple stress fluid region, fluid velocity in the 
couple stress region is decreasing with increment of a, 
whereas there is no significant change in the fluid veloci-
ties in both the Newtonian fluid regions with respect to the 
couple stress parameter. In the couple stress fluid region, 
increase in a corresponds to increase in couple stress vis-
cosity coefficient η, which resists the fluid motion. As the 
value of a is the measure of couple stress effects, when a 
is made lesser and lesser, the transformation from couple 
stress fluid to Newtonian fluid takes place; finally, at a = 0, 
the profile for Newtonian fluid is obtained.

Figure  5 displays the influence of Reynolds number 

on velocity profile. Reynolds number Re being 1 1

1

,
Uhρ

µ
 

an increase in Re corresponds to a decrease in μ1. As can 
be seen from Figure 5, as Reynolds number Re increases, 
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Figure 4: Variations of fluid velocity for various values of a.
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Figure 5: Variations of fluid velocity for various values of Re.

y
–1 –0.5 0 0.5 1 1.5 2

V
el

oc
ity

0

5

10

15
G = 5
G = 10
G = 15
G = 20

Newtonian fluid

Couple stress fluid

Newtonian fluid

Figure 6: Variations of fluid velocity for various values of G.

y
–1 –0.5 0 0.5 1 1.5 2

V
el

oc
ity

0

1

2

3

4

5

6

7

8
m1 =  0.3

m1 =  0.5
m1 = 0.7

m1 = 0.9

Couple stress fluid

Newtonian fluid Newtonian fluid
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there is a decrease in viscosity, and thus, the fluid velocity 
has a tendency to increase. Although Re is defined in terms 
of ρ1 and μ1, in view of the continuity of velocities and shear 
stresses at the interfaces, there is a transfer of momen-
tum, due to which we have the similar increasing nature 
of fluid velocities in both the Newtonian fluid regions as 
well. It is observed that with the increase in Re, velocity 
increases in all the fluid flow regions. Figure 6 represents 
the velocity profile for the different values of the pressure 
gradient. It is observed that with the increase in G, velocity 
is promoted in all fluid regions. That is, the more the pres-
sure gradient, the more the fluid is pushed to generate the 
flow, which results in an increase in fluid velocity. Figure 7 
shows the nature of velocity profile for different values 
of m1. It is seen that the increase in ratio of viscosities m1 
increases the fluid velocities in the Newtonian fluid region 
and decreases the velocity in the couple stress fluid region. 
Figure 8 shows the effect of ratio of densities on fluid veloc-
ity. It is observed that increase in ratio of densities causes a 
decrease in fluid velocities in all the three regions.

Table 1 displays the variation of volume flow rate with 
different fluid parameters. It is noted that volume flow rate 
is increased by an increase of pressure gradient and Reyn-
olds number and is decreased by an increase of ratio of 
viscosities, ratio of densities and couple stress parameter.

5  �Conclusion
The pressure-driven and time-dependent flow of an immis-
cible couple stress fluid sandwiched between Newtonian 
fluids through a horizontal channel has been studied. The 
governing equations associated with the fluid flow in the 
respective regions are solved numerically using appropri-
ate initial, boundary and interface conditions. The Crank-
Nicolson finite difference approach has been used to 
obtain numerical solutions.

The main findings of the current study are summa-
rised as follows:
(i)	 Fluid velocities in all the regions are increasing with 

time. After a certain higher time level onwards, veloci-
ties enter into a steady state.

(ii)	 Fluid velocity in the couple stress fluid region is sup-
pressed by the supplement of the couple stress para-
meter. The couple stress parameter has no significant 
influence on the Newtonian fluid regions.

(iii)	Increase of Reynolds number promote the fluid veloc-
ities in all the three regions comprehensively.

(iv)	An increasing nature is noted in the velocities of 
both Newtonian fluid regions, when varied with 
ratio of viscosities. Whereas velocity decreases with 
an increase of viscosity ratio in the couple stress 
fluid region.

(v)	 Volume flow rate is enhanced by an increase of Reyn-
olds number and suppressed by the increase of the 
couple stress parameter.

Nomenclature
a	 couple stress fluid parameter
F̅ 	 body force vector
G	 constant pressure gradient
h	 spatial step size
h1	 width of each region
(i, j)	 discretisation parameters
k	 temporal step size
m1	 ratio of viscosities
m2	 ratio of densities
n, 2n	 interfaces
p	 fluid pressure
q̅	 fluid velocity vector
Q*	 volume flow rate
Re	 Reynolds number
t	 time
u1	 component of fluid velocities in region I
u2	 component of fluid velocities in region II
u3	  component of fluid velocities in region III
U	 average fluid velocity in channel
(x, y, z)	 Cartesian coordinate system
η	 couple stress viscosity coefficient
μ	 viscosity of the fluid
μ1 	 viscosity of fluids in region I and region III
μ2	 viscosity of fluid in region II
ρ	 density of the fluid
ρ1 	 density of fluids in region I and region III
ρ2	 density of fluid in region II

Table 1: Volume flow rate for various values of G, Re, m1, m2 and a.

G   Q*  Re  Q*  m1  Q*  m2  Q*  a  Q*

5   6.3283  1  10.6640  0.3  12.8480  0.3  15.4273  0.3  12.7169
10   12.6567  2  12.6567  0.5  12.6567  0.5  12.6567  0.5  12.6567
15   18.9850  3  13.5134  0.7  12.5613  0.7  10.8841  0.7  12.6362
20   25.3134  4  14.0227  0.9  12.5052  0.9  9.6639  0.9  12.6272
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Appendix A
W = (wij)(3n−1)×(3n−1), M = (mij)(3n−1)×(3n−1) and N = (nj)(3n−1)×1,
where,
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Appendix B
For the purpose of comparison, consider the flow of the 
same Newtonian fluid through a horizontal channel (see 
Fig. 1) in all the three regions. The governing equation (3) 
for the steady flow of Newtonian fluid through the hori-
zontal channel reduces to

	
2

2
d d 0,
d d
p u
x y

µ− + = � (B.1)

with the boundary conditions,

	
1

1

( ) 0  at    and
( ) 0  at  2 .

u y y h
u y y h

= = −
= = � (B.2)

Using the non-dimensional scheme (12), the equations 
(B.1) and (B.2) become

	
2

2
d Re 0,
d
u G
y

+ = � (B.3)

with

	
( ) 0  at  1  and
( ) 0  at  2.

u y y
u y y

= = −
= = � (B.4)

Solving the ODE (B.3) with the prescribed conditions 
(B.4), the exact solution is obtained as

	
2Re( ) [2 ].

2
Gu y y y= + − � (B.5)

This velocity field for the Newtonian fluid case 
has been used to compare the results of limiting solu-
tions of the sandwiched flow problem studied in this 
paper.
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