Accessible Unlicensed Requires Authentication Published by De Gruyter November 16, 2018

Study of the Geometric Structures, Electronic and Magnetic Properties of Aluminium-Antimony Alloy Clusters

Ai-Jie Mao, Xiao-Yu Kuang, Hao Cheng, Li-Huan Zhang and Xiao-Rong Cheng

Abstract

A joint investigation based on an unbiased CALYPSO structure searching method and density functional theory calculation is performed to obtain the most stable structures of the neutral and anionic AlnSb (n = 1–16) clusters. The relative stability analysis reveals that the Al3Sb, Al5Sb, Al5Sb and Al14Sb clusters are more stable than their neighbouring clusters. The studies of electronic properties, especially in the consistency of the simulated photoelectron spectra and the experimental results for small clusters, further confirm that the predicted most stable structures are the global minima. Compared with pure aluminium (Al) clusters, the effect of impurity Sb atom on structural evolution of the neutral and anionic AlnSb(n = 1–16) clusters may be neglected, revealing that the most stable structures can be obtained by replacing one Al atom with an Sb atom in the corresponding neutral and anionic Aln+1(n = 1–16) clusters except for 8, 11 and 12. Moreover, the discussion concerning the magnetic properties indicates that the 3p state of the Al atom in the neutral and anionic AlnSb(n = 1–16) clusters is the main contributor to the total magnetic moment.

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 11574220

Funding statement: This work was supported by the National Natural Science Foundation of China (No. 11574220).

References

[1] X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, et al., J. Phys. Chem. C 120, 677 (2016). Search in Google Scholar

[2] X. D. Xing, J. J. Wang, X. Y. Kuang, X. X. Xia, C. Lu, et al., Phys. Chem. Chem. Phys. 18, 26177 (2016). Search in Google Scholar

[3] B. Zhu, D. Die, R. C. Li, H. Lan, B. X. Zheng, et al., J. Alloy Comp. 696, 402 (2017). Search in Google Scholar

[4] D. Die, B. X. Zheng, L. Q. Zhao, Q. W. Zhu, and Z. Q. Zhao, Sci. Rep-UK. 6, 31978 (2016). Search in Google Scholar

[5] X. Li, B. Kiran, J. Li, H. J. Zhai, and L. S. Wang, Angew. Chem. Int. Ed. 24, 4786 (2002). Search in Google Scholar

[6] P. Pyykkö and N. Runeberg, Angew. Chem. 41, 2174 (2002). Search in Google Scholar

[7] H. J. Zhai, J. Li, and L. S. Wang, J. Chem. Phys. 121, 8369 (2004). Search in Google Scholar

[8] Y. Gao, S. Bulusu, and X. C. Zeng, Chem. Phys. Chem. 11, 2275 (2006). Search in Google Scholar

[9] Y. Gao, N. Shao, and X. C. Zeng, J. Chem. Phys. 129, 084703 (2008). Search in Google Scholar

[10] J. L. Wang, J. L. Bai, J. Jellinek, and X. C. Zeng, J. Am. Chem. Soc. 129, 4110 (2007). Search in Google Scholar

[11] U. Landman, R. N. Barnett, A. G. Scherbakov, and P. Avouris, Phys. Rev. Lett. 85, 1958 (2000). Search in Google Scholar

[12] F. Zhang, Y. Wang, and M. Y. Chou, J. Phys. Chem. C 116, 18663 (2012). Search in Google Scholar

[13] L. Wang, J. J. Zhao, Z. Zhou, S. B. Zhang, and Z. F. Chen, J. Comput. Chem. 30, 2509 (2009). Search in Google Scholar

[14] A. X. Li, L. Guo, and X. Y. An, Russ. J. Phys. Chem. A 90, 72 (2016). Search in Google Scholar

[15] D. E. Bergeron, A. W. Castleman Jr., T. Morisato, and S. N. Khanna, Science 304, 84 (2004). Search in Google Scholar

[16] D. E. Bergeron and A. W. Castleman Jr., Chem. Phys. Lett. 371, 189 (2003). Search in Google Scholar

[17] D. E. Bergeron, P. J. Roach, A. W. Castleman Jr., N. O. Jones, and S. N. Khanna, Science 307, 231 (2005). Search in Google Scholar

[18] L. Guo, J. Phys. Chem. A. 117, 3458 (2013). Search in Google Scholar

[19] X. An, L. Guo, N. Ren, C. Wen, X. Dong, et al., J. Struct. Chem. 56, 608 (2015). Search in Google Scholar

[20] X. Li, H. B. Wu, X. B. Wang, and L. S. Wang, Phys. Rev. Lett. 81, 1909 (1998). Search in Google Scholar

[21] J. Chen, Z. X. Luo, and J. N. Yao, J. Phys. Chem. A. 120, 3950 (2016). Search in Google Scholar

[22] B. Molina, J. R. Soto, and J. J. Castro, J. Phys. Chem. C 116, 9290 (2012). Search in Google Scholar

[23] X. Li and L. S. Wang, Phys. Rev. B 65, 15304 (2002). Search in Google Scholar

[24] Z. X. Luo, C. J. Grover, A. C. Reber, S. N. Khanna, and A. W. Castleman Jr., J. Am. Chem. Soc. 135, 4307 (2013). Search in Google Scholar

[25] Y. W. Hua, Y. L. Liu, G. Jiang, J. G. Du, and J. Chen, J. Phys. Chem. A 117, 2590 (2013). Search in Google Scholar

[26] X. Zhang, B. X. Li, Z. W. Ma, and J. J. Gu, Sci. World J. 2013, 468327 (2013). Search in Google Scholar

[27] J. J. Melko, P. A. Clayborne, C. E. Jones Jr., J. U. Reveles, U. Gupta, et al., J. Phys. Chem. A 114 2045 (2010). Search in Google Scholar

[28] Y. H. Zeng, Z. N. Chen, H. J. Kang, X. J. Wang, and T. M. Wang, Special Casting Nonferrous Alloys 10, 1139 (2017). Search in Google Scholar

[29] Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Comput. Phys. Commun. 183, 2063 (2012). Search in Google Scholar

[30] J. Lv, Y. C. Wang, L. Zhu, and Y. M. Ma, J. Chem. Phys. 137, 084104 (2012). Search in Google Scholar

[31] Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, et al., J. Chem. Phys. 137, 224108 (2012). Search in Google Scholar

[32] Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Phys. Rev. B82, 094116 (2010). Search in Google Scholar

[33] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., Gaussian 03 Revision E.01, Gaussian, Inc., Wallingford, CT 2004. Search in Google Scholar

[34] A. D. Becke, Phys. Rev. A 38, 3098 (1988). Search in Google Scholar

[35] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, et al., Phys. Rev. B46, 6671 (1992). Search in Google Scholar

[36] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, et al., Phys. Rev. B48, 4978 (1993). Search in Google Scholar

[37] J. P. Perdew, K. Burke, and Y. Yang, Phys. Rev. B54, 16533 (1996). Search in Google Scholar

[38] J. P. Perdew, K. Burke, and Y. Yang, Phys. Rev. B57, 14999 (1998). Search in Google Scholar

[39] A. J. Mao, X. Y. Kuang, G. Chen, and C. Zhang, Mol. Phys. 110, 2993 (2012). Search in Google Scholar

[40] X. X. Xia, X. Y. Kuang, C. Lu, Y. Y. Jin, X. D. Xing, et al., J. Phys. Chem. A 120, 7947 (2016). Search in Google Scholar

[41] S. Paranthaman, K. Y. Hong, J. H. Kim, D. E. Kim, and T. K. Kim, J. Phys. Chem. A 117, 9293 (2013). Search in Google Scholar

[42] P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985). Search in Google Scholar

[43] D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10, 5207 (2008). Search in Google Scholar

[44] T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012). Search in Google Scholar

[45] J. W. Jia, D. D. Liu, A. J. Mao, X. X. Xia, X. Y. Kuang, et al., Mol. Phys. 115, 3033 (2017). Search in Google Scholar

[46] B. X. Li, Z. W. Ma, and Q. F. Pan, J. Clust. Sci. 27, 1041 (2016). Search in Google Scholar

[47] L. Ma, B. V. Issendorff, and A. Aguado, J. Chem. Phys. 132, 104303 (2010). Search in Google Scholar

[48] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York 1989. Search in Google Scholar

[49] M. Alipour and A. Mohajeri, J. Phys. Chem. A. 114, 12709 (2010). Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zna-2018-0345).

Received: 2018-07-17
Accepted: 2018-10-18
Published Online: 2018-11-16
Published in Print: 2019-01-28

©2018 Walter de Gruyter GmbH, Berlin/Boston