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Abstract: The propagation characteristics of solitary wave
in a degenerate plasma in the presence of Landau-
quantised magnetic field and heavy negative ion are stud-
ied. The nature of solitary wave in such plasma under
the influence of magnetic quantisation and the concen-
tration of both electrons and negative ions, as well as in
the presence of degenerate temperature, are studied with
the help of a time-independent analytical scheme of the
solution of Zakharov–Kuznetsov equation. The electron
density, as well as the magnetic quantisation parameter,
has an outstanding effect on the features of solitary wave
proliferation in such plasma. Interestingly, for any fixed
electron density, themagnetic quantisation parameter has
an equal control on the maximum height and dispersive
properties of the solitary wave. Toward higher tempera-
tures and higher magnetic fields, the width of the solitary
wave decreases. For a lower magnetic field, the maxi-
mum amplitude of the solitary wave decreases rapidly
at higher values of degenerate temperature and negative
ion concentration; however, at a lower value of degener-
ate temperature, the maximum amplitude increases with
increasing negative ion concentration.

Keywords: Degenerate Trapped Electrons; Magnetised
Plasma; Negative Ions; Zakharov–Kuznetsov Equation.

1 Introduction
Degenerate plasmas containing positive and negative
ions, especially pair-ion or multi-ion plasmas, have been
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getting enormous importance in studying the localised
electrostatic oscillations in space astrophysical as well as
laboratory plasma environment. The presence of negative
ions in different ionospheric layers [1], cometary environ-
ment [2], and plasma reactors [3], as well as in laboratory
experiments [4], has been well studied. Investigations on
solitary waves in electron-ion and multispecies plasma
in degenerate/nondegenerate, as well as in relativistic/
ultrarelativistic plasmas, have been widely carried out
because of its occurrence and importance in different
plasma environment [5–11]. Apart from these observa-
tions, electrostatic solitary wave in magnetised plasma
environment considering different distribution of electron
such as nonthermal distribution, kappa distribution, and
so on, which is relevant from the space plasma point of
view, has been well explored [12–19]. On the other hand,
in the presence of higher magnetic field, if the cyclotron
frequency exceeds the typical Coulomb energy, then the
atoms or molecules are significantly affected. In quan-
tum plasmas, in the presence of higher magnetic field,
the cyclotron orbits of electrons are quantised [20], and
due to this, the occupancy of electrons occurs in discrete
Landau levels where in each level the number of elec-
trons is directly proportional to the strength of the mag-
netic field, which is popularly known as Landau quanti-
sation. As the magnetic field increases, more and more
electrons can be accommodated in each Landau level.
Thus, the entire electronic properties simply become a
function of the strength of the applied magnetic field.
Now, based on the astrophysical data, the surface mag-
netic field of a neutron star is B ≈ 1011 − 1012G, and the
internal field can reach B ≈ 1015G or even higher [21–27].
In such strong magnetic fields, it is expected that the ther-
modynamic properties and wave dynamics in degenerate
plasmas would be quite different, as the characteristic
energy of electron on a Landau level reaches the nonrel-
ativistic limit of the electron chemical potential µ = εFe =
~|e|B/2mec, where B = Bsv2F/c2 with Bs = m2

ec3/|e|~,
vF = pFe/me, is the velocity of the electrons on the Fermi
surface; ne0 = p3Fe /3π

2~3 is the equilibrium number den-
sity; pFe is the momentum on the Fermi surface; here,
symbols have their usual meaning. On the other hand,
degenerate plasmahas awide application such asmetallic
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and semiconductor nanostructures, which include metal-
lic nanoparticles, metal clusters, thin-film spintronics,
nanotubes, quantum wells and quantum dots, nanoplas-
monic devices, quantum x-ray free electron lasers, high-
energy density physics especially inertial confinement
physics, and so on, where such plasma conditions are
prevalent [28–31]. Even hole acoustic waves along with
instability in semiconductor plasma in the presence of
Landau quantisation are reported to have its existence
in degenerate regime [32]. Apart from these, in the next-
generation intense laser–solid density plasma interaction
experiments, magnetic field of the order of giga-Gauss
appears in the petawatt lasers, and the strong Landau
quantisation can happen in such range of magnetic field
[33, 34]. On the other hand, apart from the presence of
negative ions in the plasma environmentmentioned above
[1–4], very recently, Mondal et al. reported the existence of
negative ions in the diagnostics of laser-induced plasma
in petawatt range, although their magnetic field was a
bit low [35]. Perhaps, in the future, such type of exper-
iment may come up with stronger magnetic field. Thus,
we see that these types of plasma environment have a
wide application from laboratory to extreme space plasma
environment.

There have been a few investigations on the propaga-
tion of large-/small-amplitude solitary wave in the pres-
ence of Landau-quantised magnetic field where the effect
of such high magnetic field on the amplitude/width of the
solitary wave in relativistic/nonrelativistic plasma regime
has been successfully shown [36–39]. On the other hand,
Recently, Hossen et al. [40], in a magnetised degenerate
plasma, observed the unique effect of oblique magnetic
field on the switching between compression and rarefac-
tion of the solitary wave. Mahmood et al. [41] observed
the effect of charged state of helium positive ions on the
Mach number of the compressive solitons in a quantum
plasma and concluded that in case of doubly charged pos-
itive ions subsonic and supersonic compressive solitons
are possible, whereas in case of singly charged positive
ions only subsonic compressive solitons are possible. El-
Shamy et al. [42] reported that the ion’s cyclotron fre-
quency andwave vector direction have a dominating effect
on the propagation of solitary wave in a degenerate mag-
netised plasma. Masud and Mamun in a report, described
that the height of solitary wave in a degenerate dense
plasma depends strongly on normalised number density
of electron to positive ion [43]. In another report, Ghosh
[44] analysed the properties of nonlinear waves of low
frequency in a dissipative degenerate plasma where he
reported that the source of dissipation was ion-neutral
collision. Also, he reported that such weak dissipative

soliton exists only if the ion-neutral collision rate is low
enough compared to ionplasma frequency.Haas andMah-
mood [45] carried out a study on the effect of arbitrary
degeneracy on the propagation of ion acoustic soliton and
concluded that in plasma with a relatively low density
only compressive-type solitary structure appears, whereas
in dense plasma, both compressive- and rarefactive-type
solitary structures appear. Sahu [46], in his report, numer-
ically confirmed that solitary wave’s amplitude increases
with increasing time in cylindrical as well as spherical
geometry and also found that the cylindrical solitons are
slow compared to spherical soliton. He also reported that
dissipation occurred due to the collisional effects in the
plasma system, and the quantum Bohm potential can fur-
ther enhance this dissipation of the plasma system.

Hossen and Mamun [47] in a report investigated the
properties of solitary wave in a multispecies degenerate
plasma and confirmed that basic characteristics of mod-
ified ion acoustic waves are greatly modified by the pres-
ence of different charged state of heavy ions. Hussain et al.
[48] reported the features of solitary wave propagation in
nonplanar geometry in degenerate negative ion plasma
and found that quantum diffraction parameter, positive/
negative ion temperature, and degenerate electron den-
sity have a patent effect on the phase velocity and the
structure of the soliton. Hussain and Akhtar [49] stud-
ied the collisional effect in negative ion quantum plasma
and observed a kind of damped K-dV solitary wave where
the amplitude (width) decreases (increases) with increas-
ing collisional frequency, and also, they found that the
tunnelling effect of degenerate electrons has a significant
effect on the width of the solitary structure in such colli-
sional plasma. Tie-Lu et al. [50] studied the modulation
instability of solitary waves in a degenerate negative ion
plasma and concluded that the temperature and density
ratio of negative to positive ions, as well as degeneracy
effect, have a strong control of the instability regions both
in the weakly and ultrarelativistic limit. Sahu et al. [51]
discussed the role of quantum diffraction parameter, pos-
itive ion–to–negative ion density ratio, and Mach num-
ber on the ion acoustic wave in a degenerate plasma and
reported that these parameters canmodify the basic prop-
erties of solitarywave. They also found that chaotic aswell
as quasi-periodic oscillation can coexist in such plasma,
and the nonlinear ion acoustic wave can switch from
quasi-periodic to chaotic, depending on Mach number or
quantum diffraction parameter H. Here, we have tried to
summarise the outstanding behaviour of solitary waves
in a Landau-quantised degenerate dense plasma in the
presence of heavy static negative ion through a Zakharov–
Kuznetsov (Z–K) equation, which we believe has not yet
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been addressed. We expect the results summarised here
can be important in case of space and laboratory plasma.

2 Theoretical Formulations
In order to study the features of ion acoustic waves in a
degenerate plasma with electrons following the orbits of a
quantisedmagnetic field, the basic set of equations can be
written as follows [6, 36, 39, 52–57]:

∂ni
∂t + ∇.(nivi) = 0 (1)

∂vi
∂t + (vi .∇)vi =

qi
mi

(−∇φ + vi × B0/c) (2)

∇2φ = 4πe(ne − ni + Zhnho) (3)

Now, following the Fermi–Dirac statistics, the elec-
tron occupancy in energy range ε and ε + dε, in pres-
ence of quantisedmagnetic field, can bewritten as follows
[46, 52]:

ne =
p2Feη
2π2~3

√︂
me
2

∞∑︁
l=0

∞∫︁
0

ε−1/2

1 + exp
(︀
(ε − U)/T′

)︀ dε (4)

where U = e φ + µ − l ~ωc e with potential function
and minus is the chemical potential and η = ~ωce/εFe,
the effect of quantising magnetic field appears through
η, the cyclotron frequency of the electron is given by
ωce = eB0/mec, εFe =

(︀
~2/2me

)︀(︀
3π2ne0

)︀2/3 is the elec-
tron Fermi energy, and ne0

(︀
= p3Fe /3π

2~3)︀
is the equilib-

rium electron density. The chemical potential is not truly
equal to the Fermi energy when T′ ̸= 0; however, in the
case when T′/εFe ≤ 1, it is reasonable to take µ = εFe.
The potential φ and temperature T are normalised in the
following manner: ϕ = φe/εFe and T =

(︁
πT′/2

√
2εFe

)︁
,

respectively. The summation above is over all the Landau
levels, and we note here l = 0 refers to the case with-
out a quantisingmagnetic field. Now, from basic quantum
mechanics of macroscopic system, we know that there is
an extremely high density of energy levels in the energy
eigenvalue spectrum. Thenumber of levels in a finite range
of energy spectrum increases exponentially with number
of particles (N) in the system, and the separation between
the levels is proportional to 10−N [58, 59]. Therefore, we
can conclude that it is reasonable to take a continuous
energy spectrum instead of a discrete one. Thus, to obtain
an expression of the density ne after integration, we can
separate the l = 0 case from the summation and replace
the summation in (4) by integration, which is obtained
from the condition that the integrand must remain a real

quantity; we derive the expression for electron density
as follows (for details of derivation of electron density
expression, see Appendix):

ne = ne0
{︂
3
2η(1 + ϕ)

1
2 + (1 + ϕ − η)

3
2

− ηT2

2 (1 + ϕ)−
3
2 + T2(1 + ϕ − η)−

1
2

}︂
(5)

which on expanding (5) becomes

ne
ne0

= Ne

=
η
2

(︁
3 − T2

)︁
+ (1 − η)

3
2 + T2(1 − η)−

1
2

+
3ϕ
2

{︂
η
2

(︁
1 + T2

)︁
+ (1 − η)

1
2 − T2

3 (1 − η)−
3
2

}︂

+
3ϕ2

8

{︂
−η
2

(︁
1 + 5T2

)︁
+ (1 − η)−

1
2

+ T2(1 − η)−
5
2

}︂
(6)

The charge neutrality condition is given by neo +
Zhnno = nio, where ni0, neo, nhno are the number density
for ions, electron, and heavy negative ion respectively.
Now, we can find the normalised equations from (1) to (3),

∂Ni
∂t̄ + ∇(NiVi) = 0 (7)

∂Vi
∂t̄ + (Vi∇)Vi = −∇ϕ + ViΩi (8)

∇2ϕ = (µeNe − Ni + µhn) (9)

where Ωi = ωci/ωi, µe = ne0/ni0 is the electron–to–ion
density ratio, and µhn = Zhnhn0/ni0 is the heavy negative
ion–to–ion density ratio; Zh is the charged state of heavy
negative ions, and ωci = eB0/mic is the ion cyclotron fre-
quency. The above equations are normalised with the fol-
lowing normalised parameters: length (x, y, and z) by
Debye lengths λFe =

(︀
εFe/4πni0e2

)︀1/2; the velocity (v) is
normalised by Fermi ion sound velocity Cs = (εFe/mi)1/2;
the time (t) is normalised by the inverse of ion plasma
frequency ω−1

i =
(︀
4πni0e2/mi

)︀−1/2, and ion density ni is
normalised by equilibrium density ni0.

3 Evolution Equation of Nonlinear
Wave

Adopting the standard reductive perturbation technique
and using the following stretched coordinates, we derive
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the evolution equation of solitary wave in terms that the
Z–K equation is

ξ = ε1/2
(︀
X − λt̄

)︀
, η = ε1/2Y ,

ζ = ε1/2Z, and τ = ε3/2 t̄ (10)

where λ is the normalised phase speed. The dependent
parameters such as ion density (Ni), velocity of the ions
in three different directions (Vix,iy,iz), and potential ϕ are
expanded in a power series in terms of the expansion
parameter ε as

Ni = 1 + εNi(1) + ε2Ni(2) + ε3Ni(3) + ............................

Vix = εVix(1) + ε2Vix(2) + ε3Vix(3) + ...................................

Viy,iz = ε
3
2 Viy,iz(1) + ε2Viy,iz(2) + ε

5
2 Viy,iz(3) + .........................

ϕ = εϕ(1) + ε2ϕ(2) + ε3ϕ(3) + ...........................................

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11)

Substituting the proposed coordinates and dependent
parameters from (10) to (11) through (7) to (9) and equating
the appeared lowest power of ε, we get

V (1)
ix = ϕ(1)/λ, V (1)

iy = Ix/Ωi
∂ϕ
∂ξ ,

V (1)
iz = Ix/Ωi

∂ϕ
∂ξ

N(1)
i = ϕ(1)/λ2, N(1)

e = α1ϕ(1) (12a)

where α1 = 3
2

{︁
η
2
(︀
1 + T2

)︀
+ (1 − η)

1
2 − T2

3 (1 − η)−
3
2
}︁
,

And also, we have the following the dispersion
relation:

λ2 =
1

α1(1 − µn)
(12b)

Similarly, equating the next highest coefficient of ε,
i.e. ε3/2 from the respective three directions, viz. x, y, and
z of (7) to (9), we get

∂N(1)
i

∂τ − M
∂N(2)

i
∂ξ +

∑︁
l=x,y,z

Il
∂
∂ξ V

(2)
il = 0 (13)

∂V (2)
ix
∂ξ =

1
λ
∂V (1)

ix
∂τ +

Ix
λ V

(1)
ix
∂V (1)

ix
∂ξ +

Ix
λ
∂ϕ(2)

∂ξ , (14)

∂V (2)
iy
∂ξ =

λIx
Ω2
i

∂3ϕ(1)

∂ξ3 &
∂V (2)

iz
∂ξ =

λIx
Ω2
i

∂3ϕ(1)

∂ξ3 (15)

I2x
∂3ϕ(1)

∂ξ3 = µe
∂
∂ξ N

(2)
e − ∂

∂ξ N
(2)
i (16)

Now, performing some mathematical calculations
through (13) to (16) along with (12) and (12b), the final Z–K

equation is described as

∂ϕ(1)

∂τ + Aϕ(1) ∂ϕ(1)

∂ξ + B ∂
3ϕ(1)

∂ξ3

+ C ∂∂ξ

(︃
∂2ϕ(1)

∂η2 +
∂2ϕ(1)

∂ζ 2

)︃
= 0 (17)

where A = q
p , B = 1

p & C = r
p with p = 2

λ3 , q ={︀ 3
λ4 − µeα2

}︀
, r =

(︁
1 + 1

Ω2
i

)︁
,

α2 =
3
8

{︁
−η
2

(︁
1 + 5T2

)︁
+ (1 − η)−

1
2 + T2(1 − η)−

5
2
}︁

There are various methods such as (G′/G) expansion
method, sech method, sine–cosine method, sine-Gordon
method, tanh–coth method, Hirota’s direct method, and
Lie symmetry approach [60–69] for solving nonlinear par-
tial differential (17) of the type used in the present article.
However, we are using tanh method particularly, which
falls amongst one of the methods widely accepted by
the scientific community throughout the world. Now, to
solve the Z–K (17), we have used the transformation χ =
γ(lξ + mη + nζ − Uτ) and considering ϕ(1)(ξ , η, ζ , τ) =
ψ(χ), which gives

−Uψ +
Al
2 ψ

2 + γ
2l

(︁
Bl2 + C

(︁
m2 + n2

)︁)︁d2ψ
dχ2 = 0 (18)

To derive the required solution of Z–K (17), we used the
well-known tanhmethod [70–72], and for that the transfor-
mation, z = tanh(χ) and ψ(χ) = W(z) are introduced, and
then (18) becomes

−UW +
Al
2 W

2 + γ
2l

(︁
Bl2 + C

(︁
m2 + n2

)︁)︁
(︃(︁

1 − z2
)︁2 d2W

dz2 − 2z
(︁
1 − z2

)︁dW
dz

)︃
= 0 (19)
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For finding the series solution of (19), we substitute
W(z) =

∑︀∞
r=0 arz

ρ+r, and for leading order analysis of
finite terms gives r = 2 and ρ = 0, and then the W(z)
becomes W(z) = a0 + a1z + a2z2. Now, substituting
the value of W(z) in (19), W(z) = a0 + a1z + a2z2 =
a0

(︀
1 − z2

)︀
where a0 = −a2 and a1 = 0, we get the sta-

tionary solution of Z–K (17) as follows:

ϕ(1) = ϕm sec h2
{︁ χ
w

}︁
(20)

where ϕm = 3U
Al and w = 1

2
[︀
U/l

(︀
Bl2 + C

(︀
m2 + n2

)︀)︀]︀1/2
are the amplitude and width of the solitary wave, respec-
tively, where l, m, and n are the direction cosine, and U
being the constant phase velocity.

4 Results and Discussion
From the analytical solution governed by (20), we anal-
yse the nature and characteristics of solitary wave prop-
agation under different physical situation. Here, we have
considered the charged particle density in the plasma
as 1026–29 cm−3, ambient magnetic field as 1010 ∼ 1012

Gauss, andwe find theFermi temperature for thoseplasma
parameters in the range of 3.6277 × 107K [21, 73–76].
Throughout the entire analytical observation, we have
considered helium positive ions due to its abundance in
the plasma environment of our interest, and also negative
ions are assumed to be SF−

6 .
Now, Figure 1 describes the variation of phase speed

with magnetic field–related parameter, i.e. η, at different
degenerate temperature, T, at a certain normalised elec-
tron density. It is seen that the phase velocity increases
simultaneously with magnetic quantisation and temper-
ature, which is obvious. But the rate of increase of
phase velocity is more with the increase of degenerate
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Figure 1: (a) The variation of phase speed with η and degenerate temperature, T at a certain normalised electron density. (b) The variation of
phase speed with η and degenerate temperature, T at a certain normalised negative ion density.

temperature than magnetic quantisation. On the other
hand, when both magnetic fields, i.e. η, and degenerate
temperature, T, have the highest value, the rate of increase
of phase velocity is the highest. This is primarily due to
the enhancement in the lighter plasma species in themag-
netic field lines due to the better internment of the light-
est plasma particles with the highest velocity. Similar is
the case with Figure 1b. Here, we have plotted the varia-
tion of phase velocity with η and T at a certain normalised
negative ion density. But, because of the presence of the
heaviest negative ion species, the phase velocity is less
compared to Figure 1a.

In Figure 2a, we describe the variation of nonlinear-
ity of the plasma system with quantisation parameter
and degenerate temperature at a particular normalised
electron density. It is found that the as the value of η
increases, the nonlinearity decreases, and simultaneously
with the increase in degenerate temperature, the nonlin-
earity increases. If we analyse the situation carefully, we
observe that the increase in η is simply the increase in
magnetic field and will force the plasma species to move
in the line of magnetic field making the plasma species,
especially the lighter plasma species to behave in a tidy
way, which will surely make the plasma system less non-
linear. On the other hand, as we know, the increase in
degenerate temperature, which is nothing but the thermal
velocity, will always enforce the plasma system to be more
nonlinear. However, the most interesting outcome of the
plot is that nonlinearity decreases with increasing η for
lower range of the degenerate temperature values (from
the lower black solid curve to the green dot dashed curve),
whereas it increases with magnetic quantisation parame-
ter for the higher range of the degenerate temperature val-
ues (from the red dotted curve to the orange large dashed
curve). The prime reason for this phenomenon, which we
believe in, may be due to the fact that when the tempera-
ture is higher, i.e. the thermal velocity is higher, the faster
particles get easily confined, and due to the availability
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Figure 2: (a) The variation of nonlinearity of the plasma system with quantisation parameter and degenerate temperature at a particu-
lar normalised electron density. (b) Variation of nonlinearity with increasing quantisation parameter and degenerate temperature at a
particular normalised negative ion concentration.

of such energetic particles along a certain confined path,
the frequent and rapid collision probability will increase,
which would definitely make the plasma system much
more nonlinear. In Figure 2b, we sketch the variation of
nonlinearity with increasing quantisation parameter and
degenerate temperature at a particular normalised nega-
tive ion concentration. As seen in the figure, with increas-
ing degenerate temperature, the nonlinearity decreases,
whereas with increasing η, the nonlinearity of the plasma
system, increases, which is very interesting. On careful
observation, we find the possible reason for this pecu-
liar behaviour due to the presence of enough heavy neg-
ative ions. If we analyse the situation, we find that as
the degenerate temperature increases, the lighter plasma
species, i.e. the degenerate electrons, become more and
more faster and as a result are not able to interact with
background heavy negative ions because of the such huge
difference of mass and as a result also time scale, forcing
the system to behave less nonlinearly. On the other hand,
with increase inmagnetic quantisation, the lighter plasma
species, getting more and more efficiently confined along
the magnetic field, can now undergo frequent interaction
with the background heavy negative ions, making the sys-
temmore nonlinear. This is absolutely justified if we anal-
yse the figure from a different angle. At a very low value
of degenerate temperature (say T = 0.1), the nonlinearity
decreases with increasing η, which is absolutely similar to
the case as described in Figure 2a. The reason behind this
phenomenon is that, as the magnetic quantisation or oth-
erwise magnetic field increases, as discussed before, due
to streamlined behaviour of the lightest species, the non-
linearity decreases, or otherwise lesser amount of lightest
species moving in a conduit way, is available to interact
with the random heaviest species and thus restricting the
plasma system to behave in a less nonlinear way. This is

well justified by the increase in nonlinearity with simul-
taneous increase in magnetic quantisation and degener-
ate temperature. This is because as the thermal velocity
increases in the presence of magnetic quantisation, the
faster particles have greater tendency to be magnetised
easily along the applied magnetic field, and as more and
more faster particles are available to interact with heavy
negative ions, there is a concrete possibility that it will
eventually bring more nonlinearity to the plasma system.

In Figure 3, we try to observe the typical trend of the
maximum height and width of the solitary wave at dif-
ferent plasma condition with magnetic field. This is very
interesting as in some previous work it was reported that
the amplitude of the solitary wave is unaffected by the
magnetic field and only width is affected. Surprisingly, in
such degenerate plasma, the magnetic field has a hefty
control of the height of the solitary wave. As seen in
Figure 3a, with increasing magnetic field, the maximum
amplitude of the solitary wave increases. It is to be noted
that the value of η is in the range of 0.1 to 0.6 (used later
on to study the propagation of solitary waves) with the
chosen magnetic field values, along with other physical
parameters (mentioned above) considered in the present
study, as it is evident that the outcome of quantised mag-
netic field aspects through η. However, the choice of these
values is not mandatory as one can land on such val-
ues of η by changing the values of magnetic field and
degenerate plasma density and temperature. Now, coming
back to the figure, it is quite apparent from the solution of
the shock wave’s dynamical equation that the maximum
of the solitary wave amplitude varies inversely with the
nonlinearity of plasma medium, and as it is clear from
Figure 1a, the nonlinearity decreases with increasingmag-
netic quantisation (and hence magnetic field), and thus
the maximum amplitude has almost a linearly increasing
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Figure 3: (a) The variation of maximum of solitary wave amplitude with magnetic field and (b) variation of width with magnetic field and
normalised electron density.

behaviour with increasing magnetic field as depicted in
the figure. Apart from this, the maximum amplitude of the
solitary wave decreases with increasing normalised elec-
tron density for the same range of magnetic field. The rea-
son may be because as the electron density increases, for
obvious reason, the nonlinearity will increase, and hence
the maximum amplitude will tend to decrease. However,
the width of the solitary wave increases with increasing
magnetic field and normalised electron density, and the
rate of increase of width with magnetic field is higher
than with µe, and more importantly, the rate of increase
is the highest when both electron density and the mag-
netic field have the highest within the chosen values.
This is because as more and more electrons are avail-
able to be channellised by the magnetic field, the width
will increase. Moreover, we have seen in Figure 3a and
b that the magnetic field has almost the same effect on
the height and width of the solitary wave. For example,
if we closely observe the figure, it is seen that the per-
centage rate of increase of amplitude of solitary wave with
magnetic field at a particular normalised electron den-
sity is similar to the percentage rate of increase of width
of the solitary wave with magnetic field at a particular

normalised electron density. Figure 4 describes the varia-
tion of maximum solitary wave amplitude and width with
magnetic field and degenerate temperature. The range
of magnetic field is considered the same as before. As
seen in Figure 4a, themaximumamplitude decreases with
increase in degenerate temperature, which may be due
to the rate of increase of the nonlinearity with increasing
temperature. On the other hand, on close examination,
we find that initially with a small amount of degener-
ate temperature, the maximum amplitude increases with
increasing magnetic field, but as the degenerate temper-
ature increases, the maximum amplitude decreases sig-
nificantly with increasing magnetic field. This is a very
interesting phenomenon. As discussed earlier, the mag-
netic field will enhance the confinement of the plasma
species, and this confinement increases with increasing
magnetic field, and also with the increase of temperature,
i.e. thermal velocity, the faster particles will bemore easily
confined in the line of magnetic field. Thus, as more and
more faster particles are confined along a channel of mag-
netic field, due to recurrent and swift interaction amongst
themselves and other plasma species, the system starts
behaving with higher nonlinearity, and as a result, we can

2 × 10
11

2 × 10
11

0.05

0.8

a b

0.6

0.4

T

φ
m

0.2

0.0

0.5

1.0

0.10

0.15

0.20

0.25

0.30

T = 0.2

T = 0.4

T = 0.6

T = 0.8

0.35

3 × 10
11

4 × 10
11

4 × 10
11

5 × 10
11

B
0

B
0

6 × 10
11

6 × 10
11

7 × 10
11

8 × 10
11

8 × 10
11

∆

Figure 4: (a) The variation of maximum of solitary wave amplitude with magnetic field and degenerate temperature. (b) Variation of the
width with magnetic field at different degenerate temperature.
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expect a significant decrease in the maximum amplitude,
as it is clear from the above discussion that the maximum
amplitude has an inverse relation with nonlinearity in the
present study. On the other hand, the width of the solitary
wave increases linearly with increasing magnetic field at
different degenerate temperature, as seen in Figure 4b. But
interestingly, at higher temperature, although initially the
width increases linearly with increasing magnetic field, at
higher magnetic field, the width tends to show a decrease
in its value. This may be because as both temperature and
magnetic field increase, there is a possibility that the faster
particles can get trapped along the magnetic field lines
easily, making the wave less dispersive, and hence we see
a lessening value of width at high temperature and high
magnetic field.

Figure 5a and b describe the variation of solitary wave
potential withmagnetic quantisation parameter, analysed
based on steady-state solution of the governing equation.
As seen in both figures, the height andwidth of the solitary
wave increase in equal proportion with increasing nor-
malised electron density at different increasing values of
η. This is in exact accordance with the variation of non-
linearity with increasingmagnetic quantisation, aswell as
with the variation ofmaximumamplitude andwidth of the
solitary wave with magnetic field, and can be understood
in similar context.
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In Figure 6a andb,wehave shown the variationof soli-
tary wave profile with electron density and negative ion
density for a fixed value of temperature. Here, the other
plasma parameter such as η is fixed at 0.2. In the figures,
we can see that the amplitude declines with increasing
normalised electron density, whereas both the amplitude
and width get enriched with the enhancement of nega-
tive ion density (Figure 6b). This may be because, as the
number density of electrons increases, the system will
start behaving with higher nonlinearity at such high den-
sities, which will result in a decrease in the amplitude.
On the other hand, with negative ions, due to its heav-
ier mass, the interaction with the other plasma species
will be less as compared to the electrons, and as its den-
sity increases, this interactionwill further decrease, which
reduces the plasma nonlinearity compared to the elec-
trons, and hence the amplitude increases for the increase
in the individual value of negative ion density. But on close
examination of both the figures, the absolute value of the
shock wave potential is more in the case involving elec-
tron (Figure 6a) than negative ion (Figure 6b), which may
be due to the heavier negative ions. This is justified by the
fact that negative ions increase the width, because as neg-
ative ions increase, and accumulates, it will be less disper-
sive due to its heavy mass, and hence the width increases
accordingly.
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In Figure 7, we plot the variation of the maximum
amplitude and width of the solitary wave with normalised
heavy negative ion density and degenerate temperature
at two different magnetic field or magnetic quantisation
parameters. Here, the upper panel (Figure 7a and b) rep-
resents the variation of maximum amplitude, whereas the
lower panel (Figure 7c and d) represents the variation of
width of the solitary wave for the chosen range of the
plasma parameter. As seen in Figure 7a, for a lower mag-
netic field, the maximum amplitude of the solitary wave
decreases rapidly at higher values of degenerate temper-
ature and negative ion concentration. However, at lower
value of degenerate temperature, the maximum ampli-
tude surged up with negative ion concentration. This is
exactly in agreement with the variation of nonlinearity as
described in Figure 2b. At higher concentration of negative
ion as well as with higher thermal velocity of the lighter
species, in the presence of quantised magnetic field, the
possibility of frequent interaction increases, as we know
that the faster particles will be confined more easily and
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Figure 7: (a and b) Variation of the maximum amplitude with degenerate temperature and normalised negative ion density at two different
quantisation parameters η and (c and d) variation of width of the solitary wave with degenerate temperature and normalised negative ion
density at two different quantisation parameters η.

hence nonlinearity increases, and hence we see a reduc-
tion in the maximum value of solitary wave potential.
On the other hand, when the negative ion concentration
increases continuously, due to its heavymass, it will lower
the phase velocity significantly, and hence a very less
probability of interaction with the lighter species when
the thermal velocity of the lighter species is less, and in
turn, it makes the plasma system less nonlinear due to
which the amplitude of the solitary wave increases. On
the other hand, when we look at Figure 7b, we see that at
lower temperature theheight of the solitarywave increases
with increase in η, whereas the solitary wave potential
decreases when both the η and T increase significantly.
This can be understood in the similar context of the expla-
nation of Figure 2b.We have checked the individual values
of ϕm when T = 0.8 and µn = 0.8 for η = 0.2 and η =
0.6, respectively, and the values come out to be 0.339156
and 0.05195, respectively. The reason behind this drastic
decrease in the amplitude canbe attributed to few interest-
ing facts. The higher the magnetic field, the higher will be
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the confinement of the lighter plasma species, and if at this
point the thermal velocity of the plasma species increases,
the lighter particles will become faster, and we know that
the faster the particle is, the easier is to be trapped along
the magnetic field, and if at this condition negative ion
density increases, the amount of interactionwill be higher
amongst the plasma species, whichwill evoke higher non-
linearity, and hencewe see such a drastic drop in the value
of the solitary wave potential when the magnetic quanti-
sation increases significantly. Contrary to this, the width
of the solitary wave decreases with the increase of the
degenerate temperature and negative ion concentration
at the two different magnetic quantisation values consid-
ered. However, the rate of decrease of width with degener-
ate temperature is more when the magnetic quantisation
is higher. This is because, first, due to higher magnetic
field (with increasing η), the plasma particles will be con-
fined easily; second, due to increase in T, the faster parti-
cles will be confined along magnetic field with more ease,
which over all would make the plasma system less disper-
sive (due to better confinement) and hence a decrease in
width.

5 Conclusion
The features of solitary wave in a Landau-quantised
magnetised quantum plasma in the presence of heavy
stationary negative ion are studied. Following the reduc-
tive perturbation scheme, Z–K type equation suitable to
study such plasma environment is derived. With the help
of steady-state solution of the Z–K equation, the effect
of various degenerate plasma parameters on the soli-
tary wave propagation is studied. Unlike some previous
report, besides its effect on the dispersion of the solitary
wave, the magnetic field has a substantial control of soli-
tary wave amplitude also. For a low value of degener-
ate temperature, the maximum amplitude increases with
increasing magnetic field, but as the degenerate tempera-
ture increases, the maximum amplitude decreases signif-
icantly with increasing magnetic field. The solitary wave
is found to be less dispersive at higher temperature and
magnetic field, due to the possibility that the faster parti-
cles can get trapped along the magnetic field lines easily,
making the wave less dispersive, and hence we see less-
ening value of width at high temperature and high mag-
netic field. The amplitude (width) decreases (increases)
with increasing normalised electron density at a partic-
ular degenerate temperature, whereas as the amplitude
decreases further with increasing temperature, the width
increases further with increasing degenerate temperature.

The result describedhere canbeof great importancewhere
such plasma is inevitable, the details of which have been
described in the introduction part.
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Appendix
Derivation of the expression for trapped electron density
in a Landau-quantised degenerate plasma.

Following the Fermi–Dirac statistics, the electron
occupancy in energy range ε and ε + dε, in presence of
quantised magnetic field can be written as [45, 52]

ne =
p2Feη
2π2~3

√︂
me
2

∞∑︁
l=0

∞∫︁
0

ε−1/2

1 + exp
(︀
(ε − U)/T′

)︀dε (1)

where U = e φ+ µ− l ~ωc e and η = ~ωce/εFe; the effect
of quantising magnetic field appears through η. The sum-
mation above is over all the Landau levels, and we note
here l = 0 refers to the casewithout a quantisingmagnetic
field. Now, frombasic quantummechanics ofmacroscopic
system, we know that there is an extremely high density of
energy levels in the energy eigenvalue spectrum. The num-
ber of levels in a finite range of energy spectrum increases
exponentially with the number of particles (N) in the sys-
tem, and the separation between the levels is proportional
to 10−N [53]. Therefore, we can conclude that it is reason-
able to take a continuous energy spectrum instead of a
discrete one. Thus, to obtain an expression of the den-
sity ne after integration, we can separate the l = 0 case
from the summation and replace the summation in (1) by
integration, which is obtained from the condition that the
integrand must remain a real quantity.

Let I =
∫︀ ∞
0

ε− 1
2

1+exp((ε−U)/T′)dε, substituting ε−U
T′ =

z, i.e. ε − U = T′z and transforming

I =

∞∫︁
0

ε− 1
2

1 + exp
(︁
ε−U
T′

)︁dε

= T′
∞∫︁

−U/T

(U + T′z)−
1
2

1 + exp(z)
dz

= T′
U/T∫︁
0

(U − T′z)−
1
2

1 + exp(−z)
dz + T′

∞∫︁
0

(U + T′z)−
1
2

1 + exp(z)
dz (2)
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Here 1/(1 + exp(−z)) can be taken to be equivalent to(︁
1 − 1

ez+1

)︁
; thus, the above integral (2) becomes

I = T

⎡⎣ U/T′∫︁
0

(U − T′z)−
1
2 dz −

U/T′∫︁
0

(U − T′z)−
1
2

ez + 1 dz

+

∞∫︁
0

(U + T′z)−
1
2

ez + 1 dz

⎤⎦ (3)

In the second integral of (3), the upper limit U/T′
can be replaced by ∞ as U/T′ ≫ 1, and also the inte-
gral is rapidly convergent, which allows us to neglect the
exponentially small terms. Thus,

I = T′

⎡⎣ U/T′∫︁
0

(U − T′z)−
1
2 dz −

∞∫︁
0

(U − T′z)−
1
2

ez + 1 dz

+

∞∫︁
0

(U + T′z)−
1
2

ez + 1 dz

⎤⎦

= T′

⎡⎣ U/T′∫︁
0

(U − T′z)−
1
2 dz +

∞∫︁
0

(U + T′z)−
1
2

ez + 1 dz

−
∞∫︁
0

(U − T′z)−
1
2

ez + 1 dz

⎤⎦

I = T′
U/T′∫︁
0

(U − T′z)−
1
2 dz

+ T′
∞∫︁
0

(U + T′z)−
1
2 − (U − T′z)−

1
2

ez + 1 dz (4)

The first integral of (4) is evaluated in a straightfor-
ward manner, and the numerator of the second integral is
expanded using Taylor series expansion in the power of z,
which yield

I = T′
U/T′∫︁
0

(U − T′z)−
1
2 dz + 2T′2f ′(U)

∞∫︁
0

z
ez + 1dz

+
1
3T′

4f ′′′()
∞∫︁
0

z3

ez + 1dz + ...... (5)

Substituting the values of the integrals in (5), we get

I = 2U1/2 +
π2

6 T′
2f ′(U) +

7π4

360T′
4f ′′′(U) + ...... (6)

Again, substituting back, the values of the differen-
tial and neglecting the values of higher order derivatives in
(6), we finally find the value of the integral as I = 2U1/2 −
π2T′2
12 U−3/2. Thus, the integral in (1) becomes

ne =
p2Fe η
2 π2 ~3

√︂
me
2

∞∑︁
0

(︂
2U1/2 − π2T′2

12 U−3/2
)︂

(7)

As mentioned earlier, we separate the l = 0 case from
the summation and replace the summation by integra-
tion from l = 1 to l = lmax, i.e.

∑︀lmax
1 →

∫︀ lmax
1 dl. Further,

as U = e φ + µ − l ~ωc e = (ϕ + 1 − l η ) εF e, we obtain
lmax = ϕ+1

η in order to have the integrand as a real quan-
tity. Thus, (7) becomes

ne =
p2Fe η
2 π2 ~3

√︂
me
2

[︂(︂
2U1/2 − π2T′2

12 U−3/2
)︂]︂

l=0

+
p2Fe η
2 π2 ~3

√︂
me
2

⎡⎢⎢⎣
Φ+1
η∫︁

l=1

(︂
2U

1
2 − π2T′2

12 U− 3
2

)︂
dl

⎤⎥⎥⎦
Substituting the respective values of U for both the

cases, we get

ne =
p2Fe η
2 π2 ~3

√︂
me
2

{︂
2(ϕ + 1)1/2(εFe)1/2

− π2T′2

12 (ϕ + 1)−3/2(εFe)−3/2
}︂

+
p2Fe η
2 π2 ~3

√︂
me
2

ϕ+1
η∫︁

l=1

[︂
2{(ϕ + 1 − l η ) εF e}1/2

−π2T′2

12 {(ϕ + 1 − l η ) εF e}−3/2
]︂
dl

=
p2Fe η
2 π2 ~3

√︂
me
2

{︂
2(ϕ + 1)1/2(εFe)1/2

− π2T′2

12 (ϕ + 1)−3/2(εFe)−3/2
}︂

+
p2Fe η
2 π2 ~3

√︂
me
2

⎡⎢⎢⎣2(εF e)1/2
ϕ+1
η∫︁

l=1

(ϕ + 1 − l η)1/2dl

−π2T′2

12 (εF e)−3/2

ϕ+1
η∫︁

1

(ϕ + 1 − l η )−3/2 dl

⎤⎥⎥⎦
(8)
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After integrating and rearranging, (8) becomes

ne =
p2Fe η
2 π2 ~3

√︂
me
2

[︃
2(ϕ + 1)1/2(εFe)1/2

− π2T′2

12 (ϕ + 1)−3/2(εFe)−3/2

+
4
3(εF e)

1/2 (ϕ + 1 − η)3/2

η

+
π2T′2

6 (εF e)−3/2 (ϕ + 1 − η)−1/2

η

]︃

Making use of the respective expression for εFe, and
T′ and performing somemathematical jugglery, we finally
arrive at

ne = ne0
[︂
3 η
2 (1 + ϕ)

1
2 − η T2

2 (1 + ϕ)−
3
2

+ (1 + ϕ − η)
3
2 + T2 (1 + ϕ − η)−

1
2

]︂
,

where ne0
(︁

=p3Fe /3π
2~3

)︁
(9)

In (9), using Taylor series expansion, we get

Ne =
ne
ne0

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3
2η

(︂
1 +

ϕ
2 − ϕ2

8 +
)︂

+
{︂
(1 − η)

3
2 +

3ϕ
2 (1 − η)

1
2 +

3ϕ2

8 (1 − η)−
1
2 −

}︂

−ηT2

2

(︂
1 − 3ϕ

2 +
15ϕ2

8 −
)︂

+ T2
{︂
(1 − η)−

1
2 +

ϕ
2 (1 − η)−

3
2 +

3ϕ2

8 (1 − η)−
5
2 +

}︂
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Ne =
ne
ne0

=
η
2

(︁
3 − T2

)︁
+ (1 − η)

3
2 + T2(1 − η)−

1
2 +

3
2ϕ

{︂
η
2

(︁
1 + T2

)︁
+ (1 − η)

1
2 − T2

3 (1 − η)−
3
2

}︂

+
3
8ϕ

2
{︁

−η
2

(︁
1 + 5T2

)︁
+ (1 − η)−

1
2 + T2(1 − η)−

5
2
}︁
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