Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 22, 2021

Spherical and cylindrical conductive thermal diodes based on two phase-change materials

  • Suraju Olawale Kasali EMAIL logo , Jose Ordonez-Miranda , Kamal Alaili and Karl Joulain ORCID logo


We theoretically studied and optimized the thermal rectification of spherical and cylindrical conductive thermal diodes operating with two phase-change materials (PCMs), whose thermal conductivities significantly changes in a narrow interval of temperatures. This is done by deriving simple analytical expressions for the heat flows, temperature profiles and rectification factors of both diodes. It is shown that diode geometry has a significant impact on the heat flows and temperature profiles, but not so much on the thermal diode rectification factor. Optimal rectification factors of 63.5 and 63.2% are obtained for the spherical and cylindrical thermal diodes operating between the terminals of VO2 and polyethylene with a temperature difference of 150 K spanning the metal–insulator transition of both PCMs. These similar rectification factors could be enhanced even more with a phase-change material exhibiting higher contrast thermal conductivity than the ones in the present study. The obtained results can thus be useful to guide the development of PCMs capable of optimizing the rectification of conductive heat flows with different geometries.

Corresponding author: Suraju Olawale Kasali, Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962 Futuroscope, Chasseneuil, France; and Department of Physics/Geology/Geophysics, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, Nigeria, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


[1] T.-M. Shih, Z. Gao, Z. Guo, H. Merlitz, P. J. Pagni, and Z. Chen, “Maximal rectification ratios for idealized bi-segment thermal rectifiers,” Sci. Rep., vol. 5, p. 12677, 2015. in Google Scholar PubMed PubMed Central

[2] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys., vol. 84, no. 3, p. 1045, 2012. in Google Scholar

[3] N. A. Roberts and D. Walker, “A review of thermal rectification observations and models in solid materials,” Int. J. Therm. Sci., vol. 50, no. 5, pp. 648–662, 2011. in Google Scholar

[4] K. S. Remella, S. Karthik, F. M. Gerner, and A. Shuja, “Mathematical modeling of novel two-phase heat transfer device for thermal management of light emitting diodes,” J. Heat Tran., vol. 139, no. 6, 2017. in Google Scholar

[5] C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett., vol. 104, no. 15, p. 154301, 2010. in Google Scholar PubMed

[6] H. Iizuka and S. Fan, “Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates,” J. Appl. Phys., vol. 112, no. 2, p. 024304, 2012. in Google Scholar

[7] S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett., vol. 98, no. 11, p. 113106, 2011. in Google Scholar

[8] L. Wang and Z. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanosc. Microsc. Therm., vol. 17, no. 4, pp. 337–348, 2013. in Google Scholar

[9] B. Li, L. Wang, and G. Casati, “Thermal diode: rectification of heat flux,” Phys. Rev. Lett., vol. 93, no. 18, p. 184301, 2004. in Google Scholar PubMed

[10] K. Garcia-Garcia and J. Alvarez-Quintana, “Thermal rectification assisted by lattice transitions,” Int. J. Therm. Sci., vol. 81, pp. 76–83, 2014. in Google Scholar

[11] E. Pereira, “Sufficient conditions for thermal rectification in general graded materials,” Phys. Rev. E, vol. 83, no. 3, p. 031106, 2011. in Google Scholar PubMed

[12] G. Zhang and H. Zhang, “Thermal conduction and rectification in few-layer graphene y junctions,” Nanoscale, vol. 3, no. 11, pp. 4604–4607, 2011. in Google Scholar PubMed

[13] D. Segal, “Single mode heat rectifier: controlling energy flow between electronic conductors,” Phys. Rev. Lett., vol. 100, no. 10, p. 105901, 2008. in Google Scholar PubMed

[14] L.-A. Wu and D. Segal, “Sufficient conditions for thermal rectification in hybrid quantum structures,” Phys. Rev. Lett., vol. 102, no. 9, p. 095503, 2009. in Google Scholar PubMed

[15] J. Ordonez-Miranda, Y. Ezzahri, and K. Joulain, “Quantum thermal diode based on two interacting spinlike systems under different excitations,” Phys. Rev. E, vol. 95, no. 2, p. 022128, 2017. in Google Scholar PubMed

[16] C. Starr, “The copper oxide rectifier,” J. Appl. Phys., vol. 7, no. 1, pp. 15–19, 1936. in Google Scholar

[17] J. Hu, X. Ruan, and P. Yong Chen, “Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study,” Nano Lett., vol. 7, no. 9, pp. 2730–2735, 2009. in Google Scholar PubMed

[18] D. Sawaka, W. Kobayashi, Y. Moritomo, and I. Terasaki, “Thermal rectification in bulk materials with asymmetric shape,” Appl. Phys. Lett., vol. 95, p. 081915, 2011.10.1063/1.3559615Search in Google Scholar

[19] C. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-state thermal rectifier,” Science, vol. 314, no. 5802, pp. 1121–1124, 2006. in Google Scholar PubMed

[20] W. Kobayashi, Y. Teraoka, and I. Terasaki, “An oxide thermal rectifier,” Appl. Phys. Lett., vol. 95, no. 17, p. 171905, 2009. in Google Scholar

[21] P. Van Zwol, L. Ranno, and J. Chevrier, “Tuning near field radiative heat flux through surface excitations with a metal insulator transition,” Phys. Rev. Lett., vol. 108, no. 23, p. 234301, 2012. in Google Scholar PubMed

[22] P. J. van Zwol, L. Ranno, and J. Chevrier, “Emissivity measurements with an atomic force microscope,” J. Appl. Phys., vol. 111, no. 6, p. 063110, 2012. in Google Scholar

[23] P. Van Zwol, K. Joulain, P. B. Abdallah, J.-J. Greffet, and J. Chevrier, “Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B, vol. 83, no. 20, p. 201404, 2011. in Google Scholar

[24] C. Tso and C. Y. Chao, “Solid-state thermal diode with shape memory alloys,” Int. J. Heat Mass Tran., vol. 93, pp. 605–611, 2016. in Google Scholar

[25] R. Scheibner, M. König, D. Reuter, et al.., “Quantum dot as thermal rectifier,” New J. Phys., vol. 10, no. 8, p. 083016, 2008. in Google Scholar

[26] N. Li and J. Ren, “Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials,” Sci. Rep., vol. 4, p. 6228, 2014. in Google Scholar PubMed PubMed Central

[27] S. O. Kasali, J. Ordonez-Miranda, and K. Joulain, “Conductive thermal diode based on two phase-change materials,” Int. J. Therm. Sci., vol. 153, p. 106393, 2020. in Google Scholar

[28] H. Kang, F. Yang, and J. J. Urban, “Thermal rectification via heterojunctions of solid-state phase-change materials,” Phys. Rev. Appl., vol. 10, no. 2, p. 024034, 2018. in Google Scholar

[29] T. Zhang and T. Luo, “Giant thermal rectification from polyethylene nanofiber thermal diodes,” Small, vol. 11, no. 36, pp. 4657–4665, 2015. in Google Scholar PubMed

[30] J. Ordonez-Miranda, J. M. Hill, K. Joulain, Y. Ezzahri, and J. Drevillon, “Conductive thermal diode based on the thermal hysteresis of VO2 and nitinol,” J. Appl. Phys., vol. 123, no. 8, p. 085102, 2018. in Google Scholar

[31] A. L. Cottrill, S. Wang, A. T. Liu, W.-J. Wang, and M. S. Strano, “Dual phase change thermal diodes for enhanced rectification ratios: theory and experiment,” Adv. Energy Mater., vol. 8, no. 11, p. 1702692, 2018. in Google Scholar

[32] D.-W. Oh, C. Ko, S. Ramanathan, and D. G. Cahill, “Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2,” Appl. Phys. Lett., vol. 96, no. 15, p. 151906, 2010. in Google Scholar

[33] W. Zhu, G. Wu, H. Chen, and J. Ren, “Nonlinear heat radiation induces thermal rectifier in asymmetric holey composites,” Front. Energy Res., vol. 6, p. 9, 2018. in Google Scholar

[34] X.-K. Chen, Z.-X. Xie, W.-X. Zhou, L.-M. Tang, and K.-Q. Chen, “Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction,” Carbon, vol. 100, pp. 492–500, 2016. in Google Scholar

[35] S. Hu, M. An, N. Yang, and B. Li, “A series circuit of thermal rectifiers: an effective way to enhance rectification ratio,” Small, vol. 13, no. 6, p. 1602726, 2017. in Google Scholar PubMed

[36] X. Yang, D. Yu, B. Cao, and A. C. To, “Ultrahigh thermal rectification in pillared graphene structure with carbon nanotube–graphene intramolecular junctions,” ACS Appl. Mater. Interfaces, vol. 9, no. 1, pp. 29–35, 2016. in Google Scholar PubMed

[37] S. O. Kasali, J. Ordonez-Miranda, and K. Joulain, “Spherical and cylindrical conductive thermal diodes based on VO2,” Eur. Phys. J. Plus, vol. 134, no. 7, p. 340, 2019. in Google Scholar

Received: 2021-06-14
Accepted: 2021-10-07
Published Online: 2021-10-22
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.12.2023 from
Scroll to top button