Accessible Unlicensed Requires Authentication Published online by De Gruyter October 21, 2021

Enhanced photocatalytic activity in hydro-thermally grown nano structured ZnO/SnS core–shell composites

Govinda Dharmana, Prabhakara Srinivasa Rao Masabattula and Dakshina Murthy Potukuchi


Detoxification of water bodies from industrial pollutant dyes by semiconductor heterojunction composites briefed. Synthesis of ZnO/SnS core/shell nanocomposites by ecofriendly hydrothermal method presented. Characterization by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis absorption spectroscopy photoluminescence (PL) etc., were presented. Abundance of orthorhombic ZnO and hexagonal SnS was confirmed by X-ray diffraction. Compression of hexagonal ZnO planes (as core nanorods) and SnS core nanoparticles infers growth of core shell structure. Average crystallite size is found to be 5.8 nm. Structure and TEM morphology correlated. XPS reveals abundance of elemental oxidation state. Photocatalytic activity was studied by using visible light irradiation. Photoluminescence for ZnO/SnS core/shell nanocomposites inferred significant emission peaks. Enhanced PCA observed against visible light. Methylene blue dye characteristic PCAby its degradation evinced. PCA is found optimal for Z-S3. Configuration of bandgap promoted growth of novel hetero junction. Physical mechanism is proposed for the enhanced photocatalytic activity as accompanied by degradation of MB dye.

Corresponding author: Dakshina Murthy Potukuchi, Department of Physics, Jawaharlal Nehru Technological University, Kakinada533003, AP, India, E-mail:


Authors (MPSR and Govinda) are thankful to GMR institute of Technology, Rajam for providing financial assistance to carry out research work through the SEAD grant.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


[1] S. Yadav, N. Kumar, V. Kumari, A. Mittal, and S. Sharma, “Photocatalytic degradation of Triclopyr, a persistent pesticide by ZnO/SnO2 nano-composites,” Mater. Today: Proceedings, vol. 19, p. 642, 2019. in Google Scholar

[2] A. Fujishima, X. Zhang, and D. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep., vol. 63, p. 515, 2008. in Google Scholar

[3] A. Mills and S. LeHunte, “An overview of semiconductor photocatalysis,” J. Photochem. Photobiol., A, vol. 108, p. 1, 2000. in Google Scholar

[4] N. Serpone and A. V. Emeline, “Semiconductor photocatalysis - past, present, and future outlook,” J. Phys. Chem. Lett., vol. 3, p. 673, 2012. in Google Scholar

[5] T. Jia, F. Fu, J. Li, et al.., “Rational construction of direct Z-scheme SnS/g-C3N4 hybrid photocatalyst for significant enhancement of visible-light photocatalytic activity,” Appl. Surf. Sci., vol. 499, p. 143941, 2020. in Google Scholar

[6] D. Sudha and P. Sivakumar, “Review on the photocatalytic activity of various composite catalysts,” Chem. Eng. Process, vol. 97, p. 112, 2015. in Google Scholar

[7] G. Thirumala Rao, B. Babu, R. Joyce Stella, et al.., “Synthesis and characterization of VO2+ doped ZnO-CdS composite nanopowder,” J. Mol. Struct., vol. 1081, p. 254, 2015. in Google Scholar

[8] T. K. Jana, A. Pal, and K. Chatterjee, “Self assembled flower like CdS-ZnO nanocomposite and its photo catalytic activity,” J. Alloys Compd., vol. 583, p. 510, 2014. in Google Scholar

[9] K. Yuan, L. Chen, F. Li, and Y. Chen, “Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells,” J. Mater. Chem. C, vol. 2, p. 1018, 2014. in Google Scholar

[10] J. Zhou, Z. Zhang, X. Kong, et al.., “A novel P-N heterojunction with staggered energy level based on ZnFe2O4 decorating SnS2 nanosheet for efficient photocatalytic degradation,” Appl. Surf. Sci., vol. 510, p. 145442, 2020. in Google Scholar

[11] H. Wang, J. Yu, X. Zhan, L. Chen, Y. Sun, and H. Shi, “Direct 2D/2D Z-scheme SnNb2O6/ZnO hybrid photocatalyst with enhanced interfacial charge separation and high efficiency for pollutants degradation,” Appl. Surf. Sci., vol. 528, p. 146938, 2020. in Google Scholar

[12] J. Liu, K. Zhu, B. Sheng, et al.., “Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites,” J. Alloys Compd., vol. 618, p. 67, 2015. in Google Scholar

[13] W. Hu, N. D. Quang, S. Majumder, et al.., “Efficient photo charge transfer of Al-doped ZnO inverse opal shells in SnS2 photoanodes prepared by atomic layer deposition,” J. Alloys Compd., vol. 819, p. 153349, 2020. in Google Scholar

[14] R. Joyce Stella, G. Thirumala Rao, V. Pushpa Manjari, B. Babu, C. Rama Krishna, and R. V. S. S. N. Ravikumar, “Structural and optical properties of CdO/ZnS core/shell nanocomposites,” J. Alloys Compd., vol. 628, p. 39, 2015. in Google Scholar

[15] H. S. Ali, A. Alghamdi, G. Murtaza, et al.., “Facile microemulsion synthesis of vanadium-doped ZnO nanoparticles to analyze the compositional, optical, and electronic properties,” Materials, vol. 12, p. 821, 2019. in Google Scholar

[16] M. H. Habibi and M. H. Rahmati, “Fabrication and characterization of ZnO@CdS core-shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap,” Spectrochim. Acta Mol. Biomol. Spectrosc., vol. 133, p. 13, 2014. in Google Scholar

[17] L. Feng, H. Kuang, X. Yuan, et al.., “A novel method for aqueous synthesis of CdTe duantum dots,” Spectrochim. Acta Mol. Biomol. Spectrosc., vol. 123, p. 298, 2014. in Google Scholar

[18] L. Xu, W. Kuang, F. Xian, and X. Wang, “Tailoring the optical properties of ZnO thin films with a double-layer structure: the role of annealing temperature,” Surf. Interfaces, vol. 21, p. 100658, 2020. in Google Scholar

[19] S. J. Lee, H. J. Jung, R. Koutavarapu, et al.., “ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation,” Appl. Surf. Sci., vol. 496, p. 143665, 2019. in Google Scholar

[20] M. R. Sazideh, H. R. Dizaji, M. H. Ehsani, and R. Z. Moghadam, “Modification of the morphology and optical properties of SnS films using glancing angle deposition technique,” Appl. Surf. Sci., vol. 405, p. 514, 2017. in Google Scholar

[21] B. Babu, J. Shim, and K. Yoo, “Effects of annealing on bandgap and surface plasmon resonance enhancement in Au/SnO2 quantum dots,” Ceram. Int., vol. 46, p. 17, 2020. in Google Scholar

[22] S. Jayswal and R. S. Moirangthem, “Construction of a solar spectrum active SnS/ZnO p-n heterojunction as a highly efficient photocatalyst: the effect of the sensitization process on its performance,” New J. Chem., vol. 42, p. 13689, 2018. in Google Scholar

[23] S. Khanchandani, S. Kundu, A. Patra, and A. K. Ganguli, “Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods,” J. Phys. Chem. C, vol. 116, p. 23653, 2012. in Google Scholar

[24] A. B. Makama, A. Salmiaton, E. B. Saion, T. S. Y. Choong, and N. Abdullah, “Microwave-assisted synthesis of porous ZnO/SnS2 heterojunction and its enhanced photoactivity for water purification,” J. Nanomater., vol. 2015, p. 108297, 2015. in Google Scholar

[25] F. Wang, W. Li, S. Gu, H. Li, X. Liu, and M. Wang, “Fabrication of FeWO4@ZnWO4/ZnO heterojunction photocatalyst: synergistic effect of ZnWO4/ZnO and FeWO4@ZnWO4/ZnO heterojunction structure on the enhancement of visible-light photocatalytic activity,” ACS Sustain. Chem. Eng., vol. 4, p. 6288, 2016. in Google Scholar

[26] Q. Ma, X. Lv, Y. Wang, and J. Chen, “Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures,” Opt. Mater., vol. 60, p. 86, 2016. in Google Scholar

[27] X. Chen, J. Dai, G. Shi, L. Li, G. Wang, and H. Yang, “Visible light photocatalytic degradation of dyes by β-Bi2O3/graphene nanocomposites,” J. Alloys Compd., vol. 649, p. 872, 2015. in Google Scholar

[28] G. Ahmed, M. Hanif, L. Zhao, M. Hussain, J. Khan, and Z. Liu, “Defect engineering of ZnO nanoparticles by graphene oxide leading to enhanced visible light photocatalysis,” J. Mol. Catal. Chem., vol. 425, p. 310, 2016. in Google Scholar

[29] A. Di Mauro, M. Cantarella, G. Nicotra, et al.., “Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications,” Sci. Rep., vol. 7, p. 40895, 2017. in Google Scholar

[30] G. Rajender, B. Choudhury, and P. K. Giri, “In-situ decoration of plasmonic Au nanoparticles on graphene dots-graphite carbon nitride hybrid and evalution of its visible light photocatalytic performance,” Nanotechnology, vol. 28, p. 39, 2017. in Google Scholar

[31] M. S. Devi, S. Abinaya, T. Maiyalagan, and G. Keerthiga, “Nanorods of α-Bi2O3 for photocatalytic degradation of methylene blue,” Mater. Today: Proceedings, 2020., in press.Search in Google Scholar

[32] K. Sunita, K. Simanta, P. Amitava, and A. K. Ganguli, “Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis,” J. Phys. Chem. C, vol. 117, p. 5558, 2013. in Google Scholar

[33] I. Y. Y. Bu, “Investigation of novel heterojunction: p-type SnS coated n-type ZnO nanowire,” Superlattices Microstruct., vol. 88, p. 704, 2015. in Google Scholar

[34] Y.-C. Liang, T.-W. Lung, and N.-C. Xu, “Photoexcited properties of Tin sulfide nanosheet-decorated ZnO nanorod heterostructures,” Nanoscale Res. Lett., vol. 12, p. 258, 2017. in Google Scholar

[35] S. Muruganandam and G. Murugadoss, “Large- scale preparation of ZnS-ZnO-SnS nanocomposites: investigation on structural and optical properties,” Optik, vol. 220, p. 165187, 2020. in Google Scholar

[36] A. H. Elsheikh, J. Yu, R. Sathyamurthy, M. M. Tawfik, S. Shanmugan, and F. A. Essa, “Improving the tribological properties of AISI M50 steel using Sns/Zno solid lubricants,” J. Alloys Compd., vol. 821, p. 153494, 2020. in Google Scholar

[37] Q. Liu, S. Liu, A. Wu, H. Huang, and L. Zhou, “SnS2 and SnS/SnS2 heterojunction nanosheets prepared by in-situ one-step sulfurization and visible light-assisted electrochemical water splitting properties,” J. Alloys Compd., vol. 834, p. 155174, 2020. in Google Scholar

[38] G. T. Rao, R. J. Stella, B. Babu, et al.., “Structural, optical and magnetic properties of Mn2+ doped ZnO-CdS composite nanopowder,” Mater. Sci. Eng., B, vol. 201, p. 72, 2015. in Google Scholar

[39] D. Das and R. K. Dutta, “A novel method of synthesis of small band gap SnS nanorods and its efficient photocatalytic dye degradation,” J. Colloid Interface Sci., vol. 457, p. 339, 2015. in Google Scholar

[40] G. Thirumala Rao, B. Babu, R. Joyce Stella, V. Pushpa Manjari, and R. V. S. S. N. Ravikumar, “Spectral investigations on undoped and Cu2+ doped ZnO-CdS composite nanopowders,” Spectrochim. Acta Mol. Biomol. Spectrosc., vol. 139, p. 86, 2015. in Google Scholar

[41] L. Wang, H. Zhai, G. Jin, et al.., “3D porous ZnO-SnS p-n heterojunction for visible light driven photocatalysis,” Phys. Chem. Chem. Phys., vol. 19, p. 16576, 2017. in Google Scholar

[42] D. Behera and B. S. Acharya, “Nano-star formation in Al-doped ZnO thin film deposited by dip-dry method and its characterization using atomic force microscopy, electron probe microscopy, photoluminescence and laser Raman spectroscopy,” J. Lumin., vol. 128, p. 1577, 2008. in Google Scholar

[43] B. Ghosh, M. Das, P. Banerjee, and S. Das, “Fabrication and optical properties of SnS thin films by SILAR method,” Appl. Surf. Sci., vol. 254, p. 6436, 2008. in Google Scholar

[44] H. Derikvandi and A. Nezamzadeh-Ejhieh, “An effective wastewater treatment based on sunlight photodegradation by SnS2-ZnS/clinoptilolite composite,” Solid State Sci., vol. 101, p. 106127, 2020. in Google Scholar

[45] C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl., vol. 17, p. 142, 1992. in Google Scholar

[46] S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Appl. Phys. Lett., vol. 89, p. 221916, 2006. in Google Scholar

[47] T. W. MurphyJr., “Maximum spectral luminous efficacy of white light,” J. Appl. Phys., vol. 111, p. 104909, 2012. in Google Scholar

[48] A. K. Ambast, J. Goutam, S. Som, and S. K. Sharma, “Ca1−x−yDyxKyWO4: a novel near UV converting phosphor for white light emitting diode,” Spectrochim. Acta Mol. Biomol. Spectrosc., vol. 122, p. 93, 2014. in Google Scholar

Received: 2021-07-27
Revised: 2021-09-12
Accepted: 2021-09-28
Published Online: 2021-10-21

© 2021 Walter de Gruyter GmbH, Berlin/Boston