Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter August 5, 2022

Modern era of double perovskite nano-phosphors: La2MgTiO6, Gd2MgTiO6 and Y2MgTiO6 – a brief review

Vannadil Puthiyaveetil Veena, Cherlan Kottianmadathil Shilpa, Seere Valappil Jasira and Kavukuzhi Meerasahib Nissamudeen


Double perovskites, as a star material, are becoming a significant research domain due to their flexible structure, variable formulae, unique properties and wide applications. Trimming the materials into nano regime and introducing rare-earth integration would improve their properties and broaden their applications. The main purpose of this work lies in the comparison of luminescence properties of double perovskite nanophosphors La2MgTiO6 (LMT), Gd2MgTiO6 (GMT) and Y2MgTiO6 (YMT). A detailed list of numerous excitation and corresponding emission wave lengths are discussed. Various synthesis methods adopted for the fusion of these materials, which are reported till this date, are also considered. This study shall assist the scientific community to identify the suitable host for luminescent applications in the field of lighting, displays, illumination, biological imaging, biological sensing etc.

Corresponding author: Kavukuzhi Meerasahib Nissamudeen, School of Pure and Applied Physics, Kannur University, Payyanur Campus, Edat, Kannur, Kerala, 670327, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


[1] X. Yin, J. Yao, Y. Wang, C. Zhao, and F. Huang, “Novel red phosphor of double perovskite compound La2MgTiO6: xEu3+,” J. Lumin., vol. 132, no. 7, pp. 1701–1704, 2012. in Google Scholar

[2] A. M. Srivastava and W. W. Beers, “Luminescence of Mn4+ in the distorted perovskite Gd2MgTiO6,” J. Electrochem. Soc., vol. 143, no. 9, p. L203, 1996. in Google Scholar

[3] B. Su, H. Xie, Y. Tan, Y. Zhao, Q. Yang, and S. Zhang, “Luminescent properties, energy transfer, and thermal stability of double perovskites La2MgTiO6: Sm3+, Eu3+,” J. Lumin., vol. 204, pp. 457–463, 2018. in Google Scholar

[4] Z. Zeng, Y. Xu, Z. Zhang, et al.., “Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications,” Chem. Soc. Rev., vol. 49, no. 4, pp. 1109–1143, 2020. in Google Scholar PubMed

[5] P. Gao, P. Dong, Z. Zhou, et al.., “Enhanced luminescence and energy transfer performance of double perovskite structure Gd2MgTiO6: Bi3+, Mn4+ phosphor for indoor plant growth LED lighting,” Ceram. Int., vol. 47, no. 12, pp. 16588–16596, 2021. in Google Scholar

[6] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A, vol. 32, no. 5, pp. 751–767, 1976.10.1107/S0567739476001551Search in Google Scholar

[7] G. Blasse and B. C. Grabmaier, Luminescent Materials, Berlin, New York, Springer-Verlag, 1994.10.1007/978-3-642-79017-1Search in Google Scholar

[8] G. Ju, Y. Hu, L. Chen, X. Wang, and Z. Mu, “Concentration quenching of persistent luminescence,” Phys. B Condens. Matter, vol. 415, pp. 1–4, 2013. in Google Scholar

[9] P. Gao, Z. Zhou, P. Dong, et al.., “Tuning the luminescence properties of blue and far‐red dual emitting Gd2MgTiO6: Bi3+, Cr3+ phosphor for LED plant lamp,” J. Am. Ceram. Soc., vol. 104, no. 12, pp. 6444–6454, 2021. in Google Scholar

[10] J. Li, J. Liao, H. R. Wen, L. Kong, M. Wang, and J. Chen, “Multiwavelength near infrared downshift and downconversion emission of Tm3+ in double perovskite Y2MgTiO6: Mn4+/Tm3+ phosphors via resonance energy transfer,” J. Lumin., vol. 213, pp. 356–363, 2019. in Google Scholar

[11] P. Cai, L. Qin, C. Chen, et al.., “Optical thermometry based on vibration sidebands in Y2MgTiO6: Mn4+ double perovskite,” Inorg. Chem., vol. 57, no. 6, pp. 3073–3081, 2018. in Google Scholar PubMed

[12] C. Cohen Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, United States, Wiley, 1999.Search in Google Scholar

[13] R. Shi, L. Lin, P. Dorenbos, and H. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr 3+ in La2MgTiO6,” J. Mater. Chem. C, vol. 5, no. 41, pp. 10737–10745, 2017. in Google Scholar

[14] W. Li, T. Chen, W. Xia, X. Yang, and S. Xiao, “Near-infrared emission of Yb3+ sensitized by Mn4+ in La2MgTiO6,” J. Lumin., vol. 194, pp. 547–550, 2018. in Google Scholar

[15] A. M. Srivastava, H. A. Comanzo, and M. G. Brik, “Luminescence of Bi3+ in the double perovskite, La2MgTiO6,” Opt. Mater., vol. 75, pp. 809–813, 2018. in Google Scholar

[16] H. Xie, B. Su, Y. Tan, Y. Zhao, and S. Chai, “Effect of Gd3+, Bi3+, or Sm3+ on luminescent properties of La2−xMgTiO6: xEu3+ phosphors,” Luminescence, vol. 33, no. 8, pp. 1450–1455, 2018. in Google Scholar PubMed

[17] M. Hu, C. Liao, L. Xia, W. You, and Z. Li, “Low temperature synthesis and photoluminescence properties of Mn4+-doped La2MgTiO6 deep-red phosphor with a LiCl flux,” J. Lumin., vol. 211, pp. 114–120, 2019. in Google Scholar

[18] K. Kasuya, Y. Sato, M. Kobayashi, H. Kato, M. Kakihana, and K. Tomita, “B-site-ordered double-perovskite oxide up-conversion phosphors doped with Yb and Ho, Er, or Tm,” J. Photopolym. Sci. Technol., vol. 32, no. 4, pp. 593–596, 2019. in Google Scholar

[19] B. Bondzior, D. Stefańska, T. H. Q. Vũ, N. Miniajluk-Gaweł, and P. J. Dereń, “Red luminescence with controlled rise time in La2MgTiO6: Eu3+,” J. Alloys Compd., vol. 852, p. 157074, 2021. in Google Scholar

[20] T. H. Q. Vu, B. Bondzior, D. Stefańska, and P. J. Dereń, “Influence of temperature on near-infrared luminescence, energy transfer mechanism and the temperature sensing ability of La2MgTiO6: Nd3+ double perovskites,” Sensor Actuator Phys., vol. 317, p. 112453, 2021. in Google Scholar

[21] H. Yuan, Z. Huang, L. Xu, H. Jia, X. Sun, and K. Liu, “La2MgTiO6: Bi3+/Mn4+ photoluminescence materials: molten salt preparation, Bi3+ → Mn4+ energy transfer and thermostability,” J. Lumin., vol. 224, p. 117290, 2020. in Google Scholar

[22] G. C. Xing, Y. X. Feng, M. Pan, et al.., “Photoluminescence tuning in a novel Bi3+/Mn4+ co-doped La2ATiO6:(A = Mg, Zn) double perovskite structure: phase transition and energy transfer,” J. Mater. Chem. C, vol. 6, pp. 13136–13147, 2018. in Google Scholar

[23] S. Gai, H. Zhu, P. Gao, et al.., “Structure analysis, tuning photoluminescence and enhancing thermal stability on Mn4+-doped La2-xYxMgTiO6 red phosphor for agricultural lighting,” Ceram. Int., vol. 46, no. 12, pp. 20173–20182, 2020. in Google Scholar

[24] D. Stefańska, B. Bondzior, T. H. Q. Vu, M. Grodzicki, and P. J. Dereń, “Temperature sensitivity modulation through changing the vanadium concentration in a La2MgTiO6: V5+, Cr3+ double perovskite optical thermometer,” Dalton Trans., vol. 50, no. 28, pp. 9851–9857, 2021. in Google Scholar PubMed

[25] T. H. Q. Vu, B. Bondzior, D. Stefańska, and P. J. Dereń, “Exploration of the temperature sensing ability of La2MgTiO6: Er3+ double perovskites using thermally coupled and uncoupled energy levels,” Materials, vol. 14, no. 19, p. 5557, 2021. in Google Scholar PubMed PubMed Central

[26] Y. Hua and J. S. Yu, “Strong green emission of Erbium (III)-Activated La2MgTiO6 phosphors for solid-state lighting and optical temperature sensors,” ACS Sustain. Chem. Eng., vol. 9, no. 14, pp. 5105–5115, 2021. in Google Scholar

[27] V. Sivakumar and U. Varadaraju, “Intense red phosphor for white LEDs based on blue GaN LEDs,” J. Electrochem. Soc., vol. 153, pp. H54–H57, 2006. in Google Scholar

[28] S. K. Gupta, K. S. Prasad, N. Pathak, and R. M. Kadam, “Color tuning in CaZrO3: RE3+ perovskite by choice of rare earth ion,” J. Mol. Struct., vol. 1221, p. 128776, 2020. in Google Scholar

Received: 2022-04-04
Revised: 2022-07-05
Accepted: 2022-07-06
Published Online: 2022-08-05

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow