Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 5, 2019

High-temperature superconductors: underlying physics and applications

Annette Bussmann-Holder and Hugo Keller

Abstract

Superconductivity was discovered in 1911 by Kamerlingh Onnes and Holst in mercury at the temperature of liquid helium (4.2 K). It took almost 50 years until in 1957 a microscopic theory of superconductivity, the so-called BCS theory, was developed. Since the discovery a number of superconducting materials were found with transition temperatures up to 23 K. A breakthrough in the field happened in 1986 when Bednorz and Müller discovered a new class of superconductors, the so-called cuprate high-temperature superconductors with transition temperatures as high as 135 K. This surprising discovery initiated new efforts with respect to fundamental physics, material science, and technological applications. In this brief review the basic physics of the conventional low-temperature superconductors as well as of the high-temperature superconductors are presented with a brief introduction to applications exemplified from high-power to low-power electronic devices. Finally, a short outlook and future challenges are presented, finished with possible imaginations for applications of room-temperature superconductivity.


Dedicated to: Professor Arndt Simon on the occasion of his 80th birthday.


Acknowledgements

We gratefully acknowledge encouraging and constructive discussions with Prof. K. A. Müller. Special thanks are devoted to Prof. A. Simon for fruitful discussions and continuous support of our work in the field of high-temperature superconductivity and related research topics. We also kindly thank R. Noack for preparing the figures.

References

[1] H. K. Onnes, Leiden Comm.1911, 119b, 122–124.Search in Google Scholar

[2] J. E. Kuenzler, Rev. Mod. Phys.1961, 33, 501–509.10.1103/RevModPhys.33.501Search in Google Scholar

[3] J. G. Bednorz, K. A. Müller, Z. Phys. B1986, 64, 189–193.10.1007/BF01303701Search in Google Scholar

[4] E. Maxwell, Phys. Rev.1950, 78, 477.10.1103/PhysRev.78.477Search in Google Scholar

[5] C. A. Reynolds, B. Serin, W. H. Wright, L. B. Nesbitt, Phys. Rev.1950, 78, 487.10.1103/PhysRev.78.487Search in Google Scholar

[6] H. Fröhlich, Phys. Rev.1950, 79, 845–856.10.1103/PhysRev.79.845Search in Google Scholar

[7] L. N. Cooper, Phys. Rev.1956, 104, 1189–1190.10.1103/PhysRev.104.1189Search in Google Scholar

[8] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev.1957, 108, 1175–1204.10.1103/PhysRev.108.1175Search in Google Scholar

[9] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature (London)2001, 410, 63–64.10.1038/35065039Search in Google Scholar

[10] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yangi, T. Kamiya, H. Hosono, J. Am. Chem. Soc.2006, 128, 10012–10013.10.1021/ja063355cSearch in Google Scholar

[11] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, S. I. Shylin, Nature (London)2015, 525, 73–76.10.1038/nature14964Search in Google Scholar

[12] K. H. Höck, H. Nickisch, H. Thomas, Helv. Phys. Acta1983, 56, 237–244.Search in Google Scholar

[13] K. A. Müller, J. Phys.: Condens. Matter2007, 19, 251002.10.1088/0953-8984/19/25/251002Search in Google Scholar

[14] K. A. Müller, J. Supercond. Nov. Magn.2014, 27, 2163–2179.10.1007/s10948-014-2751-5Search in Google Scholar

[15] K. A. Müller, J. Supercond. Nov. Magn.2017, 30, 3007–3018.10.1007/s10948-017-4262-7Search in Google Scholar

[16] G. Binnig, A. Baratoff, H. E. Hoenig, J. G. Bednorz, Phys. Rev. Lett.1980, 45, 1352–1355.10.1103/PhysRevLett.45.1352Search in Google Scholar

[17] J. P. Franck in Physical Properties of High Temperature Superconductors IV (Ed.: D. M. Ginsberg), World Scientific, Singapore, 1994, pp. 189–293.10.1142/9789814440981_0004Search in Google Scholar

[18] H. Keller in Superconductivity in Complex Systems, Structure and Bonding, Vol. 114 (Eds.: K. A. Müller, A. Bussmann-Holder), Springer-Verlag, Berlin, Heidelberg, New York, 2005, pp. 114–143.Search in Google Scholar

[19] A. P. Malozemoff, J. Mannhart, D. Scalapino, Phys. Today2005, 58, 41–47.10.1063/1.1955478Search in Google Scholar

[20] S. Tanaka, Jpn. J. Appl. Phys.2006, 45, 9011–9024.10.1143/JJAP.45.9011Search in Google Scholar

[21] M. Suenaga, Metallurgy of Continuous Filamentary A15 Superconductors in Materials Science, Vol. 68, Plenum Press, Springer, New York, London, 1981.10.1007/978-1-4757-0037-4_4Search in Google Scholar

[22] J. W. Bray, IEEE Trans. Appl. Supercond.2009, 19, 1051–8223.Search in Google Scholar

[23] D. C. Larbalestier, IEEE Trans. Appl. Supercond.1997, 7, 90–97.10.1109/77.614425Search in Google Scholar

[24] W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, Wiley-VCH, Weinheim, 2004.10.1002/9783527618507Search in Google Scholar

[25] A. Pawlak, Phys. J.2014, 13, Heft 6, 6–7.Search in Google Scholar

[26] B. T. Matthias, Phys. Rev.1955, 97, 74–76.10.1103/PhysRev.97.74Search in Google Scholar

[27] N. B. Hannay, T. H. Geballe, B. T. Matthias, K. Andres, P. Schmidt, D. MacNair, Phys. Rev. Lett.1965, 14, 225–226.10.1103/PhysRevLett.14.225Search in Google Scholar

[28] H. Suhl, B. T. Matthias, L. R. Walker, Phys. Rev. Lett.1959, 3, 552–554.10.1103/PhysRevLett.3.552Search in Google Scholar

[29] M. Iavarone, G. Karapetrov, A. E. Koshelev, W. K. Kwok, G. W. Crabtree, D. G. Hinks, W. N. Kang, E.-M. Choi, H. J. Kim, H.-J. Kim, S. I. Lee, Phys. Rev. Lett.2002, 89, 187002.10.1103/PhysRevLett.89.187002Search in Google Scholar

[30] W. A. Little, Sci. Am. 1965, 212, 21–27.10.1038/scientificamerican0265-21Search in Google Scholar

[31] V. L. Ginzburg, Contemp. Phys.1968, 9, 355–374.10.1080/00107516808220090Search in Google Scholar

[32] N. W. Ashcroft, Phys. Rev. Lett.1968, 21, 1748–1749.10.1103/PhysRevLett.21.1748Search in Google Scholar

[33] V. L. Ginzburg, D. A. Kirzhnits (Eds.) High-Temperature Superconductivity, Springer-Verlag, Berlin, 1982.10.1007/978-1-4613-3915-1Search in Google Scholar

[34] J. G. Bednorz, K. A. Müller, Adv. Chem.1968, 100, 757–790.Search in Google Scholar

[35] L. Pauling, Nature (London)1948, 161, 1019–1020.10.1038/1611019b0Search in Google Scholar

[36] P. W. Anderson, Science1987, 232, 1196–1198.10.1126/science.235.4793.1196Search in Google Scholar

[37] K. Antonowicz, Nature (London)1974, 247, 358–360.10.1038/247358a0Search in Google Scholar

[38] J. Langer, Solid State Commun.1987, 26, 839–844.10.1016/0038-1098(78)90755-XSearch in Google Scholar

[39] J. Ladik, A. Bierman, Phys. Lett. A1969, 29, 636–637.10.1016/0375-9601(69)91140-2Search in Google Scholar

[40] V. L. Ginzburg, D. A. Kirzhnitz, Sov. Phys. JETP1964, 19, 269–270.Search in Google Scholar

[41] D. M. Eagles, Physica C2012, 483, 82–85.10.1016/j.physc.2012.07.011Search in Google Scholar

[42] N. T. Bagraev, E. S. Brilinskaya, E. Yu. Danilovskii, L. E. Klyachkin, A. M. Malyarenko, V. V. Romanov, Semiconductors2012, 46, 87–92.10.1134/S1063782612010022Search in Google Scholar

[43] G. M. Zhao, Trends in Nanotube Research, Nova Science, New York, 2006, p. 39.Search in Google Scholar

[44] N. S. Enikolopyan, L. N. Grigorov, S. G. Smirnova, JETP Lett.1989, 49, 371–375.Search in Google Scholar

[45] A. P. Drozdov, V. S. Minkov, S. P. Besedin, P. P. Kong, M. A. Kuzovnikov, D. A. Knyazev, M. I. Eremets, arXiv:1808.07039.Search in Google Scholar

[46] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, R. J. Hemley, Phys. Rev. Lett.2019, 122, 027001.10.1103/PhysRevLett.122.027001Search in Google Scholar

[47] Y. Kawashima, AIP Adv.2013, 3, 052132.10.1063/1.4808207Search in Google Scholar

[48] D. K. Thapa, S. Islam, S. K. Saha, P. S. Mahapatra, B. Bhattacharyya, T. P. Sai, R. Mahadevu, S. Patil, A. Ghosh, A. Pandey, arXiv:1807.08572.Search in Google Scholar

[49] S. Reich, G. Leitus, Y. Tssaba, Y. Levi, A. Sharoni, O. Millo, J. Supercond.2000, 13, 855–861.10.1023/A:1007867710512Search in Google Scholar

Received: 2019-06-06
Accepted: 2019-07-04
Published Online: 2019-10-05
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston