Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 10, 2020

Influence of meso-linker attachment on the formation of core···π interactions in urea-functionalized porphyrins

  • Keith J. Flanagan , Aoife A. Ryan , Brendan Twamley and Mathias O. Senge EMAIL logo

Abstract

The ability to cover the face of a porphyrin macrocycle selectively is an attractive feature for concepts such as catalysis and anion binding that is reliant on porphyrin core interactions. Herein, we have synthesized a family of mono-urea functionalized porphyrin complexes with intent to investigate their potential to form core···π interactions selectively to one face of the porphyrin macrocycle. By altering the distance between the urea moiety and the porphyrin through direct linkage or introducing a linker group we can control the formation of the core interactions. This is clearly seen in the crystal structure of 1-phenyl-3-(2-([10,15,20-triphenylporphyrinato]zinc(II)-5-yl)phenyl)urea where a unique face capping effect is demonstrated. In the crystal of this complex, there is a hydrogen-bonding network between the urea group and the axial methanol ligand forming head-to-tail aggregates with the Zn–O axis all molecules pointing in one direction.


Corresponding author: Prof. Dr. Mathias O. Senge, School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152–160 Pearse Street, Dublin 2, Dublin, Ireland, E-mail:

Funding source: Science Foundation Ireland

Award Identifier / Grant number: IvP 13/IA/1894

Funding source: FET

Award Identifier / Grant number: 828779

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by a grant from Science Foundation Ireland (SFI, IvP 13/IA/1894) and through funding from the European Union’s Horizon 2020 research and innovation program under the FET Open grant agreement no. 828779.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gotico, P., Boitrel, B., Guillot, R., Sircoglou, M., Quaranta, A., Halime, Z., Leibl, W., Aukauloo, A. Angew. Chem. Int. Ed. 2019, 58, 4504–4509; https://doi.org/10.1002/anie.201814339.Search in Google Scholar PubMed

2. Ladomenou, K., Bonar-Law, R. P. Chem. Commun. 2002, 2108–2109, https://doi.org/10.1039/b206646g.Search in Google Scholar PubMed

3. Uddin, S. M. N., Nagao, Y. Langmuir 2017, 33, 12777–12784; https://doi.org/10.1021/acs.langmuir.7b03450.Search in Google Scholar PubMed

4. Calderon-Kawasaki, K., Kularatne, S., Li, Y. H., Noll, B. C., Scheidt, W. R., Burns, D. H. J. Org. Chem. 2007, 72, 9081–9087; https://doi.org/10.1021/jo701443c.Search in Google Scholar PubMed PubMed Central

5. Norvaiša, K., Flanagan, K. J., Gibbons, D., Senge, M. O. Angew. Chem. Int. Ed. 2019, 58, 16553–16557.10.1002/anie.201907929Search in Google Scholar PubMed PubMed Central

6. Kielmann, M., Senge, M. O. Angew. Chem. Int. Ed. 2018, 58, 418–441; https://doi.org/10.1002/anie.201806281.Search in Google Scholar PubMed PubMed Central

7. Roucan, M., Kielmann, M., Connon, S. J., Bernhard, S. S. R., Senge, M. O. Chem. Commun. 2018, 54, 26–29; https://doi.org/10.1039/c7cc08099a.Search in Google Scholar PubMed

8. Simonneaux, G., Srour, H., Le Maux, P., Chevance, S., Carrie, D. Symmetry 2014, 6, 210–221; https://doi.org/10.3390/sym6020210.Search in Google Scholar

9. Callaghan, S., Flanagan, K. J., O’Brien, J. E., Senge, M. O. Eur. J. Org. Chem. 2020, 2735–2744, https://doi.org/10.1002/ejoc.202000283.Search in Google Scholar PubMed PubMed Central

10. Frost, J. R., Huber, S. M., Breitenlechner, S., Bannwarth, C., Bach, T. Angew. Chem. Int. Ed. 2015, 54, 691–695.Search in Google Scholar

11. Burg, F., Breitenlechner, S., Jandla, C., Bach, T. Chem. Sci. 2020, 11, 2121–2129; https://doi.org/10.1039/c9sc06089h.Search in Google Scholar PubMed PubMed Central

12. Hyslop, A. G., Kellett, M. A., Iovine, P. M., Therien, M. J. J. Am. Chem. Soc. 1998, 120, 12676–12677; https://doi.org/10.1021/ja982410h.Search in Google Scholar

13. Yan, L., Che, X., Bai, X., Pei, Y. Mol. Divers. 2012, 16, 489–501; https://doi.org/10.1007/s11030-012-9382-1.Search in Google Scholar PubMed

14. Abraham, T., Soloski, E. J., Benner, C. L., Evers, R. C. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 4305–4318; https://doi.org/10.1002/pola.1989.080271308.Search in Google Scholar

15. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/s2052520616003954.Search in Google Scholar

16. Lin, W., Cen, T.-Y., Wang, S.-P., Zhang, Z., Wu, J., Huang, J., Li, S. Chin. Chem. Lett. 2018, 29, 1372–1374; https://doi.org/10.1016/j.cclet.2017.10.029.Search in Google Scholar

17. Jagessar, R. C., Shang, M., Scheidt, W. R., Burns, D. H. J. Am. Chem. Soc. 1998, 120, 11684–11692; https://doi.org/10.1021/ja982052i.Search in Google Scholar

18. Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129–138; https://doi.org/10.1007/bf00549096.Search in Google Scholar

19. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A., CrystalExplorer17; University of Western Australia: Perth, 2017.Search in Google Scholar

20. Ryan, A., Gehrold, A., Perusitti, R., Pintea, M., Fazekas, M., Locos, O. B., Blaikie, F., Senge, M. O. Eur. J. Org. Chem. 2011, 5817–5844, https://doi.org/10.1002/ejoc.201100642.Search in Google Scholar

21. Goudriaan, P. E., Jang, X.-B., Kuil, M., Lemmens, R., Van Leeuwen, P. W. N. M., Reek, J. N. H. Eur. J. Org. Chem. 2008, 6079–6092, https://doi.org/10.1002/ejoc.200800499.Search in Google Scholar

22. Collman, J. P., Brauman, J. I., Doxsee, K. M., Halbert, T. R., Bumenberg, E., Linder, R. E., LaMar, G. N., Del Gaudio, J., Lang, G., Spartalian, K. J. Am. Chem. Soc. 1980, 102, 4182–4192; https://doi.org/10.1021/ja00532a033.Search in Google Scholar

23. Hope, H. Prog. Inorg. Chem. 1994, 41, 1–19.Search in Google Scholar

24. Senge, M. O. Z. Naturforsch. 2000, 55b, 336–344; https://doi.org/10.1515/znb-2000-3-417.Search in Google Scholar

25. SADABS (version 2016/2); Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Search in Google Scholar

26. APEX3 (version 2016.9-0); Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Search in Google Scholar

27. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

28. Sheldrick, G. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

29. Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht (The Netherlands), 2010.Search in Google Scholar

30. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Search in Google Scholar

Received: 2020-06-05
Accepted: 2020-07-10
Published Online: 2020-08-10
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2023 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0099/html
Scroll to top button