Abstract
The ability to cover the face of a porphyrin macrocycle selectively is an attractive feature for concepts such as catalysis and anion binding that is reliant on porphyrin core interactions. Herein, we have synthesized a family of mono-urea functionalized porphyrin complexes with intent to investigate their potential to form core···π interactions selectively to one face of the porphyrin macrocycle. By altering the distance between the urea moiety and the porphyrin through direct linkage or introducing a linker group we can control the formation of the core interactions. This is clearly seen in the crystal structure of 1-phenyl-3-(2-([10,15,20-triphenylporphyrinato]zinc(II)-5-yl)phenyl)urea where a unique face capping effect is demonstrated. In the crystal of this complex, there is a hydrogen-bonding network between the urea group and the axial methanol ligand forming head-to-tail aggregates with the Zn–O axis all molecules pointing in one direction.
Funding source: Science Foundation Ireland
Award Identifier / Grant number: IvP 13/IA/1894
Funding source: FET
Award Identifier / Grant number: 828779
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was supported by a grant from Science Foundation Ireland (SFI, IvP 13/IA/1894) and through funding from the European Union’s Horizon 2020 research and innovation program under the FET Open grant agreement no. 828779.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Gotico, P., Boitrel, B., Guillot, R., Sircoglou, M., Quaranta, A., Halime, Z., Leibl, W., Aukauloo, A. Angew. Chem. Int. Ed. 2019, 58, 4504–4509; https://doi.org/10.1002/anie.201814339.Search in Google Scholar PubMed
2. Ladomenou, K., Bonar-Law, R. P. Chem. Commun. 2002, 2108–2109, https://doi.org/10.1039/b206646g.Search in Google Scholar PubMed
3. Uddin, S. M. N., Nagao, Y. Langmuir 2017, 33, 12777–12784; https://doi.org/10.1021/acs.langmuir.7b03450.Search in Google Scholar PubMed
4. Calderon-Kawasaki, K., Kularatne, S., Li, Y. H., Noll, B. C., Scheidt, W. R., Burns, D. H. J. Org. Chem. 2007, 72, 9081–9087; https://doi.org/10.1021/jo701443c.Search in Google Scholar PubMed PubMed Central
5. Norvaiša, K., Flanagan, K. J., Gibbons, D., Senge, M. O. Angew. Chem. Int. Ed. 2019, 58, 16553–16557.10.1002/anie.201907929Search in Google Scholar PubMed PubMed Central
6. Kielmann, M., Senge, M. O. Angew. Chem. Int. Ed. 2018, 58, 418–441; https://doi.org/10.1002/anie.201806281.Search in Google Scholar PubMed PubMed Central
7. Roucan, M., Kielmann, M., Connon, S. J., Bernhard, S. S. R., Senge, M. O. Chem. Commun. 2018, 54, 26–29; https://doi.org/10.1039/c7cc08099a.Search in Google Scholar PubMed
8. Simonneaux, G., Srour, H., Le Maux, P., Chevance, S., Carrie, D. Symmetry 2014, 6, 210–221; https://doi.org/10.3390/sym6020210.Search in Google Scholar
9. Callaghan, S., Flanagan, K. J., O’Brien, J. E., Senge, M. O. Eur. J. Org. Chem. 2020, 2735–2744, https://doi.org/10.1002/ejoc.202000283.Search in Google Scholar PubMed PubMed Central
10. Frost, J. R., Huber, S. M., Breitenlechner, S., Bannwarth, C., Bach, T. Angew. Chem. Int. Ed. 2015, 54, 691–695.Search in Google Scholar
11. Burg, F., Breitenlechner, S., Jandla, C., Bach, T. Chem. Sci. 2020, 11, 2121–2129; https://doi.org/10.1039/c9sc06089h.Search in Google Scholar PubMed PubMed Central
12. Hyslop, A. G., Kellett, M. A., Iovine, P. M., Therien, M. J. J. Am. Chem. Soc. 1998, 120, 12676–12677; https://doi.org/10.1021/ja982410h.Search in Google Scholar
13. Yan, L., Che, X., Bai, X., Pei, Y. Mol. Divers. 2012, 16, 489–501; https://doi.org/10.1007/s11030-012-9382-1.Search in Google Scholar PubMed
14. Abraham, T., Soloski, E. J., Benner, C. L., Evers, R. C. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 4305–4318; https://doi.org/10.1002/pola.1989.080271308.Search in Google Scholar
15. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/s2052520616003954.Search in Google Scholar
16. Lin, W., Cen, T.-Y., Wang, S.-P., Zhang, Z., Wu, J., Huang, J., Li, S. Chin. Chem. Lett. 2018, 29, 1372–1374; https://doi.org/10.1016/j.cclet.2017.10.029.Search in Google Scholar
17. Jagessar, R. C., Shang, M., Scheidt, W. R., Burns, D. H. J. Am. Chem. Soc. 1998, 120, 11684–11692; https://doi.org/10.1021/ja982052i.Search in Google Scholar
18. Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129–138; https://doi.org/10.1007/bf00549096.Search in Google Scholar
19. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A., CrystalExplorer17; University of Western Australia: Perth, 2017.Search in Google Scholar
20. Ryan, A., Gehrold, A., Perusitti, R., Pintea, M., Fazekas, M., Locos, O. B., Blaikie, F., Senge, M. O. Eur. J. Org. Chem. 2011, 5817–5844, https://doi.org/10.1002/ejoc.201100642.Search in Google Scholar
21. Goudriaan, P. E., Jang, X.-B., Kuil, M., Lemmens, R., Van Leeuwen, P. W. N. M., Reek, J. N. H. Eur. J. Org. Chem. 2008, 6079–6092, https://doi.org/10.1002/ejoc.200800499.Search in Google Scholar
22. Collman, J. P., Brauman, J. I., Doxsee, K. M., Halbert, T. R., Bumenberg, E., Linder, R. E., LaMar, G. N., Del Gaudio, J., Lang, G., Spartalian, K. J. Am. Chem. Soc. 1980, 102, 4182–4192; https://doi.org/10.1021/ja00532a033.Search in Google Scholar
23. Hope, H. Prog. Inorg. Chem. 1994, 41, 1–19.Search in Google Scholar
24. Senge, M. O. Z. Naturforsch. 2000, 55b, 336–344; https://doi.org/10.1515/znb-2000-3-417.Search in Google Scholar
25. SADABS (version 2016/2); Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Search in Google Scholar
26. APEX3 (version 2016.9-0); Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Search in Google Scholar
27. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar
28. Sheldrick, G. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central
29. Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht (The Netherlands), 2010.Search in Google Scholar
30. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston