Abstract
The cesium dodecahydro-monocarba-closo-dodecaborate Cs[CB11H12] crystallizes with an unexpected trigonal crystal structure having the lattice parameters a = 2094.73(3) and c = 1324.56(2) pm (c/a = 0.632) for Z = 18. The non-centrosymmetric space group R3 allows an ordering of the unsymmetric [CB11H12]– anions in a way that the least electronegative vertices of the pseudo-icosahedral cages avoid close proximity to the Cs+ cations. Hence there are channels at [0 0 z], [1/32/3z] and [2/31/3z], into which the C–H bonds of the [CB11H12]– units are pointing. There are two crystallographically independent Cs+ cations and [CB11H12]– anions present with unsurprising interatomic distances (d(C–B) = 166–181 pm, d(B–B) = 170–183 pm, d(B–H) = d(C–H) ≈ 110 pm) for the latter. Both Cs+ cations have contact to 18 hydrogen atoms (d(Cs–H) = 296–427 pm) stemming from six unevenly face-grafting [CB11H12]– anions, where only B–H bonds are involved. This fact is nicely reflected by IR and Raman spectroscopy. According to a 6/6 motif of the ions with highly distorted mutual octahedral coordination spheres of their centres of gravity, the crystal structure of Cs[CB11H12] follows roughly a rock salt-like arrangement. This becomes even more evident, when order-disorder transitions starting at T = 60 °C lead to more highly symmetrical structures with orientationally disordered [CB11H12]– anions.
Widmung: Professor Todd B. Marder zum 65. Geburtstag gewidmet.
Danksagung
Wir danken Herrn Dr. Falk Lissner (AOR) für die Einkristallmessungen, Herrn Christof Schneck (CTA) für die DSC-Messungen sowie dem Land Baden-Württemberg (Stuttgart) und der Deutschen Forschungsgemeinschaft (Bonn) im Rahmen der Förderung des Graduiertenkollegs „Moderne Methoden der magnetischen Resonanz in der Materialforschung“ an der Universität Stuttgart für die großzügige Unterstützung mit Sachmitteln.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Wade, K. Adv. Inorg. Radiochem. 1976, 18, 1–66; https://doi.org/10.2307/25604954.Search in Google Scholar
2. Aihara, J. J. Am. Chem. Soc. 1978, 100, 3339–3342; https://doi.org/10.1021/ja00479a015.Search in Google Scholar
3. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2003, 629, 1390–1402; https://doi.org/10.1002/zaac.200300098.Search in Google Scholar
4. Tiritiris, I., Schleid, Th., Müller, K., Preetz, W. Z. Anorg. Allg. Chem. 2000, 626, 323–325; https://doi.org/10.1002/(sici)1521-3749(200002)626:2<323::aid-zaac323>3.0.co;2-q.10.1002/(SICI)1521-3749(200002)626:2<323::AID-ZAAC323>3.0.CO;2-QSearch in Google Scholar
5. Wunderlich, J. A., Lipscomb, W. N. J. Am. Chem. Soc. 1960, 82, 4427–4428; https://doi.org/10.1021/ja01501a076.Search in Google Scholar
6. Dimitrievska, M., Wu, H., Stavila, V., Babanova, O. A., Skoryunov, R. V., Soloninin, A. V., Zhou, W., Trump, B. A., Andersson, M. S., Skripov, A. V., Udovic, T. J. J. Phys. Chem. C 2020, 124, 17992–18002; https://doi.org/10.1021/acs.jpcc.0c05038.Search in Google Scholar
7. Černý, R., Brighi, M., Dimitrievska, M., Udovic, T. J. 2020, in preparation (as quoted in ref. [14]).Search in Google Scholar
8. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 1411–1418; https://doi.org/10.1002/1521-3749(200206)628:6<1411::aid-zaac1411>3.0.co;2-x.10.1002/1521-3749(200206)628:6<1411::AID-ZAAC1411>3.0.CO;2-XSearch in Google Scholar
9. Yousufuddin, M., Her, J.-H., Zhou, W., Jalisatgi, S. S., Udovic, T. J. Inorg. Chim. Acta 2009, 362, 3155–3158; https://doi.org/10.1016/j.ica.2009.02.020.Search in Google Scholar
10. Ponomarev, V. I., Solntsev, K. A., Kuznetsov, N. T. Koord. Khim. 1991, 22, 21–28.Search in Google Scholar
11. Her, J.-H., Yousufuddin, M., Zhou, W., Jalisatgi, S. S., Kulleck, J. G., Zan, J. A., Hwang, S.-J., Bowman, R. C., Udovic, T. J. Inorg. Chem. 2008, 47, 9757–9759; https://doi.org/10.1021/ic801345h.Search in Google Scholar
12. Her, J.-H., Zhou, W., Stavila, V., Brown, C. M., Udovic, T. J. J. Phys. Chem. C 2009, 113, 11187–11189; https://doi.org/10.1021/jp904980m.Search in Google Scholar
13. Tang, W. S., Unemoto, A., Zhou, W., Stavila, V., Matsuo, M., Wu, H., Orimo, S.-I., Udovic, T. J. Energy Environ. Sci. 2015, 8, 3637–3645; https://doi.org/10.1039/c5ee02941d.Search in Google Scholar
14. Černý, R., Brighi, M., Murgia, F. Chemistry 2020, 2, 805–826.10.3390/chemistry2040053Search in Google Scholar
15. Holleman, A. F., Wiberg, N., Wiberg, E. Anorganische Chemie; Band 1: Grundlagen und Hauptgruppenelemente, 103. Auflage, De Gruyter: Berlin, Boston, 2017.Search in Google Scholar
16. Kononova, E. G., Bukalov, S. S., Leites, L. A., Lyssenko, K. A., Ol’shevskaya, V. A. Russ. Chem. Bull. 2003, 52, 85–92; https://doi.org/10.1023/a:1022436029305.10.1023/A:1022436029305Search in Google Scholar
17. Hesse, M., Meier, H., Zeeh, B. Spektroskopische Methoden in der Organischen Chemie; 7. Auflage, Thieme: Stuttgart, 2005.10.1055/b-002-46985Search in Google Scholar
18. X-Shape (Version 1.06). Crystal Optimization for Numerical Absorption Correction; STOE & Cie GmbH: Darmstadt (Germany), 1999.Search in Google Scholar
19. Sheldrick, G. M. Acta Crystallogr. 2008, 64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar
20. Sheldrick, G. M. Acta Crystallogr. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar
21. Brandenburg, K., Putz, H. Crystal Impact GbR Crystal and Molecular Structure Visualization, Diamond (Version 4.4.1): Bonn (Germany), 2017. See also https://www.crystalimpact.com/news/20170911a.htm.Search in Google Scholar
22. STOE WinXPOW (Version 1.04); STOE & Cie GmbH: Darmstadt (Germany), 1999.Search in Google Scholar
23. Proteus. Software for Thermal Analysis; Netzsch-Gerätebau GmbH. Selb (Germany), 2013. https://www.netzsch-thermal-analysis.com/en/products-solutions/software/proteus/ (accessed Oct 28, 2020).Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston