Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2021

Salts of octabismuth(2+) polycations crystallized from Lewis-acidic ionic liquids

Maximilian Knies and Michael Ruck

Abstract

The reaction of Bi and BiCl3 with RbCl or CsCl in the Lewis-acidic ionic liquid (IL) [BMIm]Cl·4AlCl3 at T = 200 °C yielded air-sensitive, shiny black crystals. X-ray diffraction on single crystals revealed the hexagonal structures of two new salts (Bi8)M[AlCl4]3 (M = Rb, Cs), which are isostructural to the high-temperature form of (Bi8)Tl[AlCl4]3. The known (Bi8)2+ polycation is a square antiprism and can be interpreted as an arachno cluster following modified Wade rules. The crystal structure is a complex variant of the hexagonal perovskite structure type ABX 3 with A = (Bi8)2+, B = M + and X = [AlCl4]. Chiral strands { M [ AlCl 4 ] 3 } 2 1 (M = Rb, Cs) run along [001]. The (Bi8)2+ polycations are only weakly coordinated inside a cage of 24 chloride ions and show dynamic rotational disorder at room temperature. Upon slow cooling to 170 K, the reorientation of the clusters was frozen, yet no long-range order was established.


Corresponding author: Michael Ruck, Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany; and Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany, E-mail: . https://tu-dresden.de/mn/chemie/ac/ac2/

Funding source: Deutsche Forschungsgemeinschaft

Acknowledgment

We acknowledge technical support by M. Münch and A. Brünner (TU Dresden).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG) within the Priority Program SPP 1708.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hershaft, A., Corbett, J. D. J. Chem. Phys. 1962, 36, 551–552; https://doi.org/10.1063/1.1732551.Search in Google Scholar

2. Corbett, J. D. Inorg. Chem. 1968, 7, 198–208; https://doi.org/10.1021/ic50060a004.Search in Google Scholar

3. Beck, J., Brendel, C. J., Bengtsson-Kloo, L., Krebs, B., Mummert, M., Stankowski, A., Ulvenlund, S. Chem. Ber. 1996, 129, 1219–1226; https://doi.org/10.1002/cber.19961291013.Search in Google Scholar

4. Kalpen, H., Hönle, W., Somer, M., Schwarz, U., Peters, K., von Schnering, H. G., Blachnik, R. Z. Anorg. Allg. Chem. 1998, 624, 1137–1147; https://doi.org/10.1002/(sici)1521-3749(199807)624:7<1137::aid-zaac1137>3.0.co;2-b.10.1002/(SICI)1521-3749(199807)624:7<1137::AID-ZAAC1137>3.0.CO;2-BSearch in Google Scholar

5. Hampel, S., Schmidt, P., Ruck, M. Z. Anorg. Allg. Chem. 2005, 631, 272–283; https://doi.org/10.1002/zaac.200400230.Search in Google Scholar

6. Lindsjö, M., Fischer, A., Kloo, L. Eur. J. Inorg. Chem. 2005, 2005, 670–675.10.1002/ejic.200400466Search in Google Scholar

7. Ruck, M., Steden, F. Z. Anorg. Allg. Chem. 2007, 633, 1556–1562; https://doi.org/10.1002/zaac.200700095.Search in Google Scholar

8. Wahl, B., Ruck, M. Z. Anorg. Allg. Chem. 2008, 634, 2873–2879; https://doi.org/10.1002/zaac.200800320.Search in Google Scholar

9. Ahmed, E., Köhler, D., Ruck, M. Z. Anorg. Allg. Chem. 2009, 635, 297–300; https://doi.org/10.1002/zaac.200800302.Search in Google Scholar

10. Wosylus, A., Dubenskyy, V., Schwarz, U., Ruck, M. Z. Anorg. Allg. Chem. 2009, 635, 1030–1035; https://doi.org/10.1002/zaac.200900035.Search in Google Scholar

11. Wahl, B., Ruck, M. Z. Anorg. Allg. Chem. 2010, 636, 337–342; https://doi.org/10.1002/zaac.200900314.Search in Google Scholar

12. Yin, W., Mei, D., Yao, J., Fu, P., Wu, Y. J. Solid State Chem. 2010, 183, 2544–2551; https://doi.org/10.1016/j.jssc.2010.08.028.Search in Google Scholar

13. Heerwig, A., Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 1814–1817; https://doi.org/10.1002/zaac.201100180.Search in Google Scholar

14. Groh, M. F., Wolff, A., Grasser, M. A., Ruck, M. Int. J. Mol. Sci. 2016, 17, 1452; https://doi.org/10.3390/ijms17091452.Search in Google Scholar

15. Groom, R., Jacobs, A., Cepeda, M., Drummey, R., Latturner, S. E. Chem. Mater. 2017, 29, 3314–3323; https://doi.org/10.1021/acs.chemmater.7b00702.Search in Google Scholar

16. Knies, M., Kaiser, M., Lê Anh, M., Efimova, A., Doert, T., Ruck, M. Inorganics 2019, 7, 45; https://doi.org/10.3390/inorganics7040045.Search in Google Scholar

17. Müller, U., Isaeva, A., Richter, J., Knies, M., Ruck, M. Eur. J. Inorg. Chem. 2016, 2016, 3580–3584; https://doi.org/10.1002/ejic.201600637.Search in Google Scholar

18. Knies, M., Kaiser, M., Isaeva, A., Müller, U., Doert, T., Ruck, M. Chem. Eur J. 2018, 24, 127–132; https://doi.org/10.1002/chem.201703916.Search in Google Scholar

19. Groh, M. F., Wolff, A., Wahl, B., Rasche, B., Gebauer, P., Ruck, M. Z. Anorg. Allg. Chem. 2017, 643, 69–80; https://doi.org/10.1002/zaac.201600354.Search in Google Scholar

20. Groh, M. F., Isaeva, A., Frey, C., Ruck, M. Z. Anorg. Allg. Chem. 2013, 639, 2401–2405; https://doi.org/10.1002/zaac.201300377.Search in Google Scholar

21. Groh, M. F., Isaeva, A., Ruck, M. Chem. Eur J. 2012, 18, 10886–10891; https://doi.org/10.1002/chem.201201038.Search in Google Scholar

22. Wahl, B., Ruck, M. Z. Anorg. Allg. Chem. 2008, 634, 2267–2275; https://doi.org/10.1002/zaac.200800229.Search in Google Scholar

23. Ruck, M. Z. Anorg. Allg. Chem. 1997, 623, 1591–1598; https://doi.org/10.1002/zaac.19976231019.Search in Google Scholar

24. Groh, M. F., Müller, U., Isaeva, A., Ruck, M. Z. Anorg. Allg. Chem. 2017, 643, 1482–1490; https://doi.org/10.1002/zaac.201700242.Search in Google Scholar

25. Mairesse, G., Barbier, P., Wignacourt, J.-P. Acta Crystallogr. 1979, B35, 1573–1580; https://doi.org/10.1107/s0567740879007160.Search in Google Scholar

26. Knies, M., Lê Anh, M., Keßler, U., Ruck, M. Z. Naturforsch. 2020, 75b, 117–123; https://doi.org/10.1515/znb-2019-0162.Search in Google Scholar

27. Lander, J. J. Acta Crystallogr. 1951, 4, 148–156; https://doi.org/10.1107/s0365110x51000441.Search in Google Scholar

28. Takeda, Y., Kanamura, F., Shimada, M., Koizumi, M. Acta Crystallogr. 1976, B32, 2464–2466; https://doi.org/10.1107/s056774087600798x.Search in Google Scholar

29. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

30. Wenninger, M. J. Polyhedron Models; University Press: Cambridge, 1971.10.1017/CBO9780511569746Search in Google Scholar

31. Krebs, B., Hucke, M., Brendel, C. J. Angew. Chem., Int. Ed. Engl. 1982, 21, 445–446; https://doi.org/10.1002/anie.198204452.Search in Google Scholar

32. Ruck, M. Ref. Module Chem. Mol. Sci. Chem. Eng.; Elsevier: Amsterdam, 2015.Search in Google Scholar

33. Ruck, M., Locherer, F. Coord. Chem. Rev. 2015, 285, 1–10; https://doi.org/10.1016/j.ccr.2014.10.010.Search in Google Scholar

34. Kuznetsov, A. N., Kloo, L., Lindsjö, M., Rosdahl, J., Stoll, H. Chem. Eur J. 2001, 7, 2821–2828; https://doi.org/10.1002/1521-3765(20010702)7:13<2821::aid-chem2821>3.0.co;2-y.10.1002/1521-3765(20010702)7:13<2821::AID-CHEM2821>3.0.CO;2-YSearch in Google Scholar

35. Beck, J., Hilbert, T. Eur. J. Inorg. Chem. 2004, 2004, 2019–202. https://doi.org/10.1002/ejic.200300646.Search in Google Scholar

36. Bruker. Saint+. Bruker AXS Inc.: Madison, Wisconsin (USA), 2017.Search in Google Scholar

37. Stoe & Cie. X-Shape. Crystal Optimization for Numerical Absorption Correction Program. STOE & Cie GmbH: Darmstadt (Germany), 2008.Search in Google Scholar

38. Petříček, V., Dušek, M., Palatinus, L. The Crystallographic Computing System. Jana 2006; Institute of Physics, Academy of Sciences of the Czech Republic: Prague (Czech Republic), 2011.Search in Google Scholar

39. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Crystal Structures - Multi-CPU; University of Göttingen: Göttingen (Germany), 2014.Search in Google Scholar

40. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

41. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2021-0042).

Received: 2021-03-26
Accepted: 2021-05-12
Published Online: 2021-05-31
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston