Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 9, 2021

1,3-Dimethyl-tetrakis(2-triphenylsilylethyl)dimethyldisiloxane: a new carbosilane for the preparation of high-refractive-index films

  • Sacha Legrand ORCID logo EMAIL logo and Ari Kärkkäinen


A new carbosilane has been synthesised in one step by hydrosilylation of 1,3-dimethyl-tetravinyldisiloxane with triphenyl silane. The new carbosilane has been characterized by 1D and 2D NMR, MS, and Gel Permeation Chromatography (GPC). The new carbosilane has been spin-coated on silicon wafers to prepare a film with very high refractive index (μ = 1.520) and excellent hydrophobicity. The film has also been analysed by Diffuse Reflectance Infrared Spectroscopy (DRIFT). The preparation of the new carbosilane does not generate waste, and its application can be easily scaled-up. Consequently, the new precursor is likely to be very useful for industrial optoelectronic applications.

Corresponding author: Sacha Legrand, Optitune Oy, Tutkijankuja 5, FIN-90590 Oulu, Finland, E-mail:


We thank Päivi Joensuu (University of Oulu, Finland) for assistance with LC-MS measurements, Eero Hietala (VTT, Technical Research Center of Finland) for assistance with DRIFT measurements, Kaisa Malo for assistance with spin-coating experiments, and Paula Keski-Korsu-Piekkari for fruitful discussions (both from Optitune Oy).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Seyferth, D. ACS Symp. Ser. 1988, 360, 21–42; in Google Scholar

2. Interrante, L. V., Shen, Q. Polycarbosilanes. In Silicon-Containing Polymers; Jones, R. G., Ando, W., Chojnowski, J., Eds. Springer: Dordrecht, 2000; pp. 247–321; in Google Scholar

3. Matsumoto, K. Polycarbosilanes. In Encyclopedia of Polymer Science and Technology; Mark, H. F., Series Ed. John Wiley & Sons: Hoboken, N. J., 4th ed., Vol. 10, 2014; pp. 386–398.10.1002/0471440264.pst428Search in Google Scholar

4. Weber, W. P. Trends Polym. Sci. 1993, 1, 356–360; in Google Scholar

5. Ohsita, J., Kunai, A. Acta Polym. 1998, 49, 379–403.10.1002/(SICI)1521-4044(199808)49:8<379::AID-APOL379>3.0.CO;2-ZSearch in Google Scholar

6. Sanchez, J. C., Trogler, W. C. Macromol. Chem. Phys. 2008, 209, 1527–1540; in Google Scholar

7. Ouyang, G., Simons, R., Tessier, C. Polym. Mater. Sci. Eng. 1994, 71, 318.Search in Google Scholar

8. Finkelshtein, E. S., Ushakov, N. V., Gringolts, M. L. Polycarbosilanes based on silicon-carbon cyclic monomers. In Silicon Polymers. Advances in Polymer Science; Muzafarov, A., Ed. Springer: Berlin, Heidelberg, Vol. 235; 2010, pp. 111–159; in Google Scholar

9. Interrante, L., Shen, Q. Hyperbranched polycarbosilanes via nucleophilic substitution reactions. In Silicon-Containing Dendritic Polymers; Dvornic, P. R., Owen, M. J., Eds.; Advances in Silicon Science, Matinsons, J., Series Ed. Springer: Dordrecht, Vol 2, 2009; pp. 315–343.10.1007/978-1-4020-8174-3_12Search in Google Scholar

10. Schüle, H., Frey, H. Hyperbranched polycarbosilanes and polycarbosiloxanes via hydrosilylation polymerization. In Silicon-Containing Dendritic Polymers; Dvornic, P. R., Owen, M. J., Eds.; Advances in Silicon Science. Matinsons, J., Series Ed. Springer: Dordrecht, Vol 2, 2009; pp. 345–375.10.1007/978-1-4020-8174-3_13Search in Google Scholar

11. Cummings, S., Smith, D., Wagener, K., Miller, R., Ginsburg, E. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 1995, 36, 696–698.Search in Google Scholar

12. Interrante, L. V., Rathore, J. S. Dalton Trans. 2010, 39, 9193–9202; in Google Scholar

13. Church, A. C., Cameron, J. H., Wagener, K. B. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 2001, 42, 235.Search in Google Scholar

14. Makarova, N. N., Astapova, T. V., Buzin, A. I., Polishchuk, A. P., Chizhova, N. V., Petrova, I. M. Int. J. Mol. Sci. 2013, 14, 18215–18238; in Google Scholar

15. Zaikov, G. E., Eds. Organosilicon Copolymers with Carbocyclosiloxane Fragments in Dimethylsiloxane Backbone; Nova Science Publishers, Inc.,: Hauppauge, N. Y. I. Javakhishvili Tbilisi Sate University, Tbilisi, Georgia.Search in Google Scholar

16. Kong, J., Schmalz, T., Motz, G., Müller, A. H. E. Macromolecules 2011, 44, 1280–1291; in Google Scholar

17. Chen, H., Kong, J. J. Phys. Chem. B 2014, 118, 3441–3450; in Google Scholar

18. Houser, E. J., Duane, D. L., Stepnowski, J. L., Papantonakis, M. R., Ross, S. K., Stepnowski, S. V., Snow, E. S., Perkins, K. F., Bryant, C., LaPuma, P., Hook, G., McGill, R. A. ACS Symp. Ser. 2007, 980, 71–87; in Google Scholar

19. Grate, J. W., Kaganove, S. N., Nelson, D. A. Chem. Innovat. 2000, 30, 29–37.Search in Google Scholar

20. Ishikawa, T. New Mater. New Process. 1985, 3, 1–2.10.1002/ace.36719852803Search in Google Scholar

21. Greil, P., Emy, T., Suttor, D. Ceram. Trans. 1995, 51, 171–178.Search in Google Scholar

22. Birot, M., Pillot, J.-P., Dunogues, J. Chem. Rev. 1995, 95, 1443–1477; in Google Scholar

23. Ganicz, T., Wlodzimierz, W. A. Prog. Polym. Sci. 2002, 28, 303–329.10.1016/S0079-6700(02)00020-5Search in Google Scholar

24. Interrante, L. V., Rushkin, I., Shen, O. Appl. Organomet. Chem. 1998, 12, 695–705;<695::aid-aoc774>;2-7.10.1002/(SICI)1099-0739(199810/11)12:10/11<695::AID-AOC774>3.0.CO;2-7Search in Google Scholar

25. Schlenk, C., Frey, H. Monatsh. Chem. 1999, 130, 3–14; in Google Scholar

26. Kim, H. K., Baek, N. S., Paik, K. L., Lee, Y., Lee, J. H. ACS Symp. Ser. 2005, 888, 247–263.10.1021/bk-2005-0888.ch019Search in Google Scholar

27. Pillot, J. P., Birot, M., Duboudin, F., Bordeau, M., Biran, C., Dunogues, J. Front. Organosilicon Chem., Proc. Int. Symp. Organosilicon Chem., 9th, 1991; pp. 40–49.Search in Google Scholar

28. Solntsev, St. S. Russ. J. Gen. Chem. 2011, 81, 992–1000; in Google Scholar

29. Simonson, D. L., McGill, R. A., Higgins, B. A. Proc. SPIE 2008, 6945, 69451R/1–69452R/8.Search in Google Scholar

30. Wang, P.-I., Wu, Z., Lu, T.-M., Interrante, L. V. J. Electrochem. Soc. 2006, 153, G267–G271; in Google Scholar

31. Yim, J.-H., Lyu, Y.-Y., Jeong, H.-D., Mah, S. K., Hyeon-Lee, J., Hahn, J.-H., Kim, G. S., Chang, S., Park, J.-G. J. Appl. Polym. Sci. 2003, 90, 626–634; in Google Scholar

32. Liao, R., Liu, C., Sa, R., Wu, K. J. Mol. Struct. Theochem 2007, 823, 28–33; in Google Scholar

33. Roovers, J., Ding, J. Carbosilane dendrimers. In Silicon-Containing Dendritic Polymers; Dvornic, P. R., Owen, M. J., Eds.; Advances in Silicon Science, Vol 2. Matinsons, J., Series Ed. Springer: Dordrecht, 2009; pp. 31–74.10.1007/978-1-4020-8174-3_3Search in Google Scholar

34. Lang, H., Luhmann, B. Adv. Mater. 2001, 13, 1523–1540;<1523::aid-adma1523>;2-p.10.1002/1521-4095(200110)13:20<1523::AID-ADMA1523>3.0.CO;2-PSearch in Google Scholar

35. Son, D. Y. Chem. Commun. 2013, 49, 10209–10210; in Google Scholar

36. Majoral, J.-P., Caminade, A.-M. Chem. Rev. 1999, 99, 845–880; in Google Scholar

37. Stark, B., Lach, C., Frey, H., Stuhn, B. Macromol. Symp. 1999, 146, 33–39; in Google Scholar

38. Martinez-Olid, F., Benito, J. M., Flores, J. C., de Jesus, E. Isr. J. Chem. 2009, 49, 99–108; in Google Scholar

39. Roovers, J. Macromol. Symp. 1997, 121, 89–93; in Google Scholar

40. Krogman, K. C., Druffel, T., Sunkara, M. K. Nanotechnology 2005, 16, S338–S343; in Google Scholar PubMed

41. Nakaruma, T., Fujii, H., Juni, N., Tsutsumi, N. Opt. Rev. 2006, 13, 104–110.10.1007/s10043-006-0104-8Search in Google Scholar

42. Suwa, M., Niwa, H., Tomikawa, M. J. Photopolym. Sci. Technol. 2006, 19, 275–276; in Google Scholar

43. Lu, P., Lam, J. W. Y., Liu, J., Jim, C. K. W., Yuan, W., Chan, C. Y. K., Xie, N., Hu, Q., Cheuk, K. K. L., Tang, B. Z. Macromolecules 2011, 44, 5977–5986; in Google Scholar

44. Kudo, H., Fujiwara, Y., Miyasaka, M., Makoto, N., Nishikubo, T. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 5746–5751; in Google Scholar

45. Bhagat, S. D., Chatterjee, J., Chen, B., Stiegman, A. E. Macromolecules 2012, 45, 1174–1181; in Google Scholar

46. Legrand, S., Hannu-Kuure, M., Kärkkäinen, A. J. Appl. Polym. Sci. 2021, 138, 49877–49892; in Google Scholar

47. Legrand, S., Hannu-Kuure, M., Kärkkäinen, A. Z. Naturforscher 2020, 75b, 359–363; in Google Scholar

48. Legrand, S., Kärkkäinen, A. J. Appl. Polym. Sci. 2021, 138, 50467–50481; in Google Scholar

49. Hofmann, R. J., Vlatkovic, M., Wiesbrock, F. Polymers 2017, 9, 534–571; in Google Scholar PubMed PubMed Central

50. Marciniec, B., Ed. Hydrosilylation, A comprehensive review on recent advances. In Advances in Silicon Science; Matinsons, J., Series Ed. Springer: Dordrecht, Vol. 1, 2009.10.1007/978-1-4020-8172-9Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (

Received: 2021-03-29
Accepted: 2021-06-01
Published Online: 2021-07-09
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.6.2023 from
Scroll to top button