Abstract
A new carbosilane has been synthesised in one step by hydrosilylation of 1,3-dimethyl-tetravinyldisiloxane with triphenyl silane. The new carbosilane has been characterized by 1D and 2D NMR, MS, and Gel Permeation Chromatography (GPC). The new carbosilane has been spin-coated on silicon wafers to prepare a film with very high refractive index (μ = 1.520) and excellent hydrophobicity. The film has also been analysed by Diffuse Reflectance Infrared Spectroscopy (DRIFT). The preparation of the new carbosilane does not generate waste, and its application can be easily scaled-up. Consequently, the new precursor is likely to be very useful for industrial optoelectronic applications.
Acknowledgments
We thank Päivi Joensuu (University of Oulu, Finland) for assistance with LC-MS measurements, Eero Hietala (VTT, Technical Research Center of Finland) for assistance with DRIFT measurements, Kaisa Malo for assistance with spin-coating experiments, and Paula Keski-Korsu-Piekkari for fruitful discussions (both from Optitune Oy).
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Seyferth, D. ACS Symp. Ser. 1988, 360, 21–42; https://doi.org/10.1021/bk-1988-0360.ch003.Search in Google Scholar
2. Interrante, L. V., Shen, Q. Polycarbosilanes. In Silicon-Containing Polymers; Jones, R. G., Ando, W., Chojnowski, J., Eds. Springer: Dordrecht, 2000; pp. 247–321; https://doi.org/10.1007/978-94-011-3939-7_10.Search in Google Scholar
3. Matsumoto, K. Polycarbosilanes. In Encyclopedia of Polymer Science and Technology; Mark, H. F., Series Ed. John Wiley & Sons: Hoboken, N. J., 4th ed., Vol. 10, 2014; pp. 386–398.10.1002/0471440264.pst428Search in Google Scholar
4. Weber, W. P. Trends Polym. Sci. 1993, 1, 356–360; https://doi.org/10.1016/0968-0004(93)90076-y.Search in Google Scholar
5. Ohsita, J., Kunai, A. Acta Polym. 1998, 49, 379–403.10.1002/(SICI)1521-4044(199808)49:8<379::AID-APOL379>3.0.CO;2-ZSearch in Google Scholar
6. Sanchez, J. C., Trogler, W. C. Macromol. Chem. Phys. 2008, 209, 1527–1540; https://doi.org/10.1002/macp.200800235.Search in Google Scholar
7. Ouyang, G., Simons, R., Tessier, C. Polym. Mater. Sci. Eng. 1994, 71, 318.Search in Google Scholar
8. Finkelshtein, E. S., Ushakov, N. V., Gringolts, M. L. Polycarbosilanes based on silicon-carbon cyclic monomers. In Silicon Polymers. Advances in Polymer Science; Muzafarov, A., Ed. Springer: Berlin, Heidelberg, Vol. 235; 2010, pp. 111–159; https://doi.org/10.1007/12_2009_39.Search in Google Scholar
9. Interrante, L., Shen, Q. Hyperbranched polycarbosilanes via nucleophilic substitution reactions. In Silicon-Containing Dendritic Polymers; Dvornic, P. R., Owen, M. J., Eds.; Advances in Silicon Science, Matinsons, J., Series Ed. Springer: Dordrecht, Vol 2, 2009; pp. 315–343.10.1007/978-1-4020-8174-3_12Search in Google Scholar
10. Schüle, H., Frey, H. Hyperbranched polycarbosilanes and polycarbosiloxanes via hydrosilylation polymerization. In Silicon-Containing Dendritic Polymers; Dvornic, P. R., Owen, M. J., Eds.; Advances in Silicon Science. Matinsons, J., Series Ed. Springer: Dordrecht, Vol 2, 2009; pp. 345–375.10.1007/978-1-4020-8174-3_13Search in Google Scholar
11. Cummings, S., Smith, D., Wagener, K., Miller, R., Ginsburg, E. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 1995, 36, 696–698.Search in Google Scholar
12. Interrante, L. V., Rathore, J. S. Dalton Trans. 2010, 39, 9193–9202; https://doi.org/10.1039/c0dt90065f.Search in Google Scholar
13. Church, A. C., Cameron, J. H., Wagener, K. B. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 2001, 42, 235.Search in Google Scholar
14. Makarova, N. N., Astapova, T. V., Buzin, A. I., Polishchuk, A. P., Chizhova, N. V., Petrova, I. M. Int. J. Mol. Sci. 2013, 14, 18215–18238; https://doi.org/10.3390/ijms140918215.Search in Google Scholar
15. Zaikov, G. E., Eds. Organosilicon Copolymers with Carbocyclosiloxane Fragments in Dimethylsiloxane Backbone; Nova Science Publishers, Inc.,: Hauppauge, N. Y. I. Javakhishvili Tbilisi Sate University, Tbilisi, Georgia.Search in Google Scholar
16. Kong, J., Schmalz, T., Motz, G., Müller, A. H. E. Macromolecules 2011, 44, 1280–1291; https://doi.org/10.1021/ma1029086.Search in Google Scholar
17. Chen, H., Kong, J. J. Phys. Chem. B 2014, 118, 3441–3450; https://doi.org/10.1021/jp411888p.Search in Google Scholar
18. Houser, E. J., Duane, D. L., Stepnowski, J. L., Papantonakis, M. R., Ross, S. K., Stepnowski, S. V., Snow, E. S., Perkins, K. F., Bryant, C., LaPuma, P., Hook, G., McGill, R. A. ACS Symp. Ser. 2007, 980, 71–87; https://doi.org/10.1021/bk-2007-0980.ch005.Search in Google Scholar
19. Grate, J. W., Kaganove, S. N., Nelson, D. A. Chem. Innovat. 2000, 30, 29–37.Search in Google Scholar
20. Ishikawa, T. New Mater. New Process. 1985, 3, 1–2.10.1002/ace.36719852803Search in Google Scholar
21. Greil, P., Emy, T., Suttor, D. Ceram. Trans. 1995, 51, 171–178.Search in Google Scholar
22. Birot, M., Pillot, J.-P., Dunogues, J. Chem. Rev. 1995, 95, 1443–1477; https://doi.org/10.1021/cr00037a014.Search in Google Scholar
23. Ganicz, T., Wlodzimierz, W. A. Prog. Polym. Sci. 2002, 28, 303–329.10.1016/S0079-6700(02)00020-5Search in Google Scholar
24. Interrante, L. V., Rushkin, I., Shen, O. Appl. Organomet. Chem. 1998, 12, 695–705; https://doi.org/10.1002/(sici)1099-0739(199810/11)12:10/11<695::aid-aoc774>3.0.co;2-7.10.1002/(SICI)1099-0739(199810/11)12:10/11<695::AID-AOC774>3.0.CO;2-7Search in Google Scholar
25. Schlenk, C., Frey, H. Monatsh. Chem. 1999, 130, 3–14; https://doi.org/10.1007/pl00010172.Search in Google Scholar
26. Kim, H. K., Baek, N. S., Paik, K. L., Lee, Y., Lee, J. H. ACS Symp. Ser. 2005, 888, 247–263.10.1021/bk-2005-0888.ch019Search in Google Scholar
27. Pillot, J. P., Birot, M., Duboudin, F., Bordeau, M., Biran, C., Dunogues, J. Front. Organosilicon Chem., Proc. Int. Symp. Organosilicon Chem., 9th, 1991; pp. 40–49.Search in Google Scholar
28. Solntsev, St. S. Russ. J. Gen. Chem. 2011, 81, 992–1000; https://doi.org/10.1134/s1070363211050306.Search in Google Scholar
29. Simonson, D. L., McGill, R. A., Higgins, B. A. Proc. SPIE 2008, 6945, 69451R/1–69452R/8.Search in Google Scholar
30. Wang, P.-I., Wu, Z., Lu, T.-M., Interrante, L. V. J. Electrochem. Soc. 2006, 153, G267–G271; https://doi.org/10.1149/1.2167932.Search in Google Scholar
31. Yim, J.-H., Lyu, Y.-Y., Jeong, H.-D., Mah, S. K., Hyeon-Lee, J., Hahn, J.-H., Kim, G. S., Chang, S., Park, J.-G. J. Appl. Polym. Sci. 2003, 90, 626–634; https://doi.org/10.1002/app.12591.Search in Google Scholar
32. Liao, R., Liu, C., Sa, R., Wu, K. J. Mol. Struct. Theochem 2007, 823, 28–33; https://doi.org/10.1016/j.theochem.2007.08.027.Search in Google Scholar
33. Roovers, J., Ding, J. Carbosilane dendrimers. In Silicon-Containing Dendritic Polymers; Dvornic, P. R., Owen, M. J., Eds.; Advances in Silicon Science, Vol 2. Matinsons, J., Series Ed. Springer: Dordrecht, 2009; pp. 31–74.10.1007/978-1-4020-8174-3_3Search in Google Scholar
34. Lang, H., Luhmann, B. Adv. Mater. 2001, 13, 1523–1540; https://doi.org/10.1002/1521-4095(200110)13:20<1523::aid-adma1523>3.0.co;2-p.10.1002/1521-4095(200110)13:20<1523::AID-ADMA1523>3.0.CO;2-PSearch in Google Scholar
35. Son, D. Y. Chem. Commun. 2013, 49, 10209–10210; https://doi.org/10.1039/c3cc44067b.Search in Google Scholar
36. Majoral, J.-P., Caminade, A.-M. Chem. Rev. 1999, 99, 845–880; https://doi.org/10.1021/cr970414j.Search in Google Scholar
37. Stark, B., Lach, C., Frey, H., Stuhn, B. Macromol. Symp. 1999, 146, 33–39; https://doi.org/10.1002/masy.19991460107.Search in Google Scholar
38. Martinez-Olid, F., Benito, J. M., Flores, J. C., de Jesus, E. Isr. J. Chem. 2009, 49, 99–108; https://doi.org/10.1560/ijc.49.1.99.Search in Google Scholar
39. Roovers, J. Macromol. Symp. 1997, 121, 89–93; https://doi.org/10.1002/masy.19971210108.Search in Google Scholar
40. Krogman, K. C., Druffel, T., Sunkara, M. K. Nanotechnology 2005, 16, S338–S343; https://doi.org/10.1088/0957-4484/16/7/005.Search in Google Scholar PubMed
41. Nakaruma, T., Fujii, H., Juni, N., Tsutsumi, N. Opt. Rev. 2006, 13, 104–110.10.1007/s10043-006-0104-8Search in Google Scholar
42. Suwa, M., Niwa, H., Tomikawa, M. J. Photopolym. Sci. Technol. 2006, 19, 275–276; https://doi.org/10.2494/photopolymer.19.275.Search in Google Scholar
43. Lu, P., Lam, J. W. Y., Liu, J., Jim, C. K. W., Yuan, W., Chan, C. Y. K., Xie, N., Hu, Q., Cheuk, K. K. L., Tang, B. Z. Macromolecules 2011, 44, 5977–5986; https://doi.org/10.1021/ma201203w.Search in Google Scholar
44. Kudo, H., Fujiwara, Y., Miyasaka, M., Makoto, N., Nishikubo, T. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 5746–5751; https://doi.org/10.1002/pola.24379.Search in Google Scholar
45. Bhagat, S. D., Chatterjee, J., Chen, B., Stiegman, A. E. Macromolecules 2012, 45, 1174–1181; https://doi.org/10.1021/ma202467a.Search in Google Scholar
46. Legrand, S., Hannu-Kuure, M., Kärkkäinen, A. J. Appl. Polym. Sci. 2021, 138, 49877–49892; https://doi.org/10.1002/app.49877.Search in Google Scholar
47. Legrand, S., Hannu-Kuure, M., Kärkkäinen, A. Z. Naturforscher 2020, 75b, 359–363; https://doi.org/10.1515/znb-2019-0199.Search in Google Scholar
48. Legrand, S., Kärkkäinen, A. J. Appl. Polym. Sci. 2021, 138, 50467–50481; https://doi.org/10.1002/app.50467.Search in Google Scholar
49. Hofmann, R. J., Vlatkovic, M., Wiesbrock, F. Polymers 2017, 9, 534–571; https://doi.org/10.3390/polym9100534.Search in Google Scholar PubMed PubMed Central
50. Marciniec, B., Ed. Hydrosilylation, A comprehensive review on recent advances. In Advances in Silicon Science; Matinsons, J., Series Ed. Springer: Dordrecht, Vol. 1, 2009.10.1007/978-1-4020-8172-9Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2021-0046).
© 2021 Walter de Gruyter GmbH, Berlin/Boston