Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 13, 2021

Laves phases forming in the system ScCo2-“InCo2”-TaCo2

  • Nataliya L. Gulay , Yaroslav M. Kalychak and Rainer Pöttgen EMAIL logo

Abstract

The binary Laves phases ScCo2 (MgCu2 type) and TaCo2 (MgNi2 type) show solid solutions with indium; synthesis of Sc1−xInxCo2 samples in sealed tantalum tubes results in tantalum uptake from the container material. Ternary and quaternary samples of these Laves phases were synthesized by direct reactions of the elements followed by different annealing sequences in induction or muffle furnaces. The following structures were refined from single-crystal X-ray diffractometer data: Sc0.08In0.19Ta0.73Co2, Sc0.26In0.5Ta0.24Co2, Sc0.25In0.34Ta0.41Co2 (all MgCu4Sn type, F43m); Sc0.53Ta0.47Co2 (MgCu2 type, Fd3m); Sc0.5In0.5Co2, Sc0.51In0.49Co2, Sc0.63In0.37Co2 and Sc0.48Ta0.52Co2 (Sc0.5In0.5Co2 type, P63mc); Sc0.63In0.15Ta0.22Co2 and Sc0.49In0.28Ta0.23Co2 (new type, P63mc, non-centrosymmetric ordering variant of MgNi0.9Cu1.1). The superstructure formation of the MgNi0.9Cu1.1 variant is discussed on the basis of a group-subgroup scheme along with crystal chemical details on Laves phases.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. J. Kösters for collecting the single-crystal data sets.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Jagodzinski, H. Acta Crystallogr. 1949, 2, 201–207. https://doi.org/10.1107/s0365110x49000552.Search in Google Scholar

2. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2020/21); ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar

3. Parthé, E. Elements of Inorganic Structural Chemistry: Selected Efforts to Predict Structural Features, 2nd ed.; K. Sutter Parthé Publisher: Petit-Lancy (Switzerland), 1996. http://archive-ouverte.unige.ch/unige:97818 (accessed Jun 22, 2020).Search in Google Scholar

4. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 75–80. https://doi.org/10.1002/zaac.202000362.Search in Google Scholar

5. Komura, Y., Nakaue, A., Mitarai, M. Acta Crystallogr. 1972, B28, 727–732. https://doi.org/10.1107/s0567740872003097.Search in Google Scholar

6. Komura, Y., Kitano, Y. Acta Crystallogr. 1977, B33, 2496–2501. https://doi.org/10.1107/s0567740877008784.Search in Google Scholar

7. Thimmaiah, S., Miller, G. J. Z. Anorg. Allg. Chem. 2015, 641, 1486–1494. https://doi.org/10.1002/zaac.201500197.Search in Google Scholar

8. Komura, Y. Acta Crystallogr. 1962, 15, 770–778. https://doi.org/10.1107/s0365110x62002017.Search in Google Scholar

9. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Search in Google Scholar

10. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735. https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.0.co;2-0.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar

11. Niepmann, D., Prots’, Y. M., Pöttgen, R., Jeitschko, W. J. Solid State Chem. 2000, 154, 329–337. https://doi.org/10.1006/jssc.2000.8789.Search in Google Scholar

12. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74. https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

13. Gladyshevskii, E. I., Krypyakevich, P. I., Teslyuk, M. Y. Dopov. Akad. Nauk. SSSR 1952, 85, 81–84.Search in Google Scholar

14. Osamura, K., Murakami, Y. J. Less-Common Met. 1978, 60, 311–313. https://doi.org/10.1016/0022-5088(78)90185-6.Search in Google Scholar

15. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16. https://doi.org/10.1107/s2052519212051366.Search in Google Scholar

16. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790. https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

17. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

18. Dwight, A. E. Trans. Am. Soc. Met. 1961, 53, 479–500.Search in Google Scholar

19. Dragsdorf, R. D., Forgeng, W. D. Acta Crystallogr. 1962, 15, 531–536. https://doi.org/10.1107/s0365110x62001371.Search in Google Scholar

20. Flack, H. D., Bernadinelli, G. Acta Crystallogr. 1999, A55, 908–915. https://doi.org/10.1107/s0108767399004262.Search in Google Scholar

21. Flack, H. D., Bernadinelli, G. J. J. Appl. Crystallogr. 2000, 33, 1143–1148. https://doi.org/10.1107/s0021889800007184.Search in Google Scholar

22. Parsons, S., Flack, H. D., Wagner, T. Acta Crystallogr. 2013, B69, 249–259. https://doi.org/10.1107/s2052519213010014.Search in Google Scholar

23. Gulay, N., Daszkiewicz, M., Tyvanchuk, Y., Kalychak, Y. Visn. Lviv. Derzh. Univ., Ser. Khim. 2018, 59, 60–66. https://doi.org/10.30970/vch.5901.060.Search in Google Scholar

24. Corbett, J. D. Inorg. Synth. 1984, 22, 15–22. https://doi.org/10.1111/j.1745-6584.1984.tb01470.x.Search in Google Scholar

25. Jeitschko, W., Albering, J. H., Brink, R., Jakubowski-Ripke, U., Reinbold, E. J. Z. Anorg. Allg. Chem. 2014, 640, 2449–2457. https://doi.org/10.1002/zaac.201400267.Search in Google Scholar

26. Dinges, T., Eul, M., Pöttgen, R. Z. Naturforsch. 2010, 65b, 95–98. https://doi.org/10.1515/znb-2010-0117.Search in Google Scholar

27. Hoffmann, R.-D., Voßwinkel, D., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2016, 642, 979–986. https://doi.org/10.1002/zaac.201600225.Search in Google Scholar

28. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

29. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

30. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537. https://doi.org/10.1002/zaac.200400250.Search in Google Scholar

31. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, 2nd ed.; Wondratschek, H., Müller, U., Eds.; Symmetry Relations Between Space Groups, Vol. A1. John Wiley & Sons, Ltd: Chichester, 2010; pp. 44–56.10.1107/97809553602060000795Search in Google Scholar

32. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar

33. Osters, O., Nilges, T., Schöneich, M., Schmidt, P., Rothballer, J., Pielnhofer, F., Weihrich, R. Inorg. Chem. 2012, 51, 8119–8127. https://doi.org/10.1021/ic3005213.Search in Google Scholar

34. Seidel, S., Pöttgen, R. Z. Anorg. Allg. Chem. 2017, 643, 261–265. https://doi.org/10.1002/zaac.201600422.Search in Google Scholar

35. Siggelkow, L., Hlukhyy, V., Fässler, T. F. Z. Anorg. Allg. Chem. 2017, 643, 1424–1430. https://doi.org/10.1002/zaac.201700180.Search in Google Scholar

36. Seidel, S., Janka, O., Benndorf, C., Mausolf, B., Haarmann, F., Eckert, H., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 289–303. https://doi.org/10.1515/znb-2016-0265.Search in Google Scholar

37. Nesper, R. Angew. Chem. Int. Ed. 1991, 30, 789–817. https://doi.org/10.1002/anie.199107891.Search in Google Scholar

38. Johnston, R. L., Hoffmann, R. Z. Anorg. Allg. Chem. 1992, 616, 105–120. https://doi.org/10.1002/zaac.19926161017.Search in Google Scholar

39. Nesper, R., Miller, G. J. J. Alloys Compd. 1993, 197, 109–121. https://doi.org/10.1016/0925-8388(93)90628-z.Search in Google Scholar

40. Ormeci, A., Simon, A., Grin, Y. Angew. Chem. Int. Ed. 2010, 49, 8997–9001. https://doi.org/10.1002/anie.201001534.Search in Google Scholar

Received: 2021-04-21
Accepted: 2021-04-26
Published Online: 2021-05-13
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2021-0052/pdf
Scroll to top button